distilbert-base-uncased-finetuned-clinc
This model is a fine-tuned version of distilbert-base-uncased on the clinc_oos dataset. It achieves the following results on the evaluation set:
- Loss: 0.7578
- Accuracy: 0.9184
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
4.2836 | 1.0 | 318 | 3.2679 | 0.7232 |
2.605 | 2.0 | 636 | 1.8538 | 0.8442 |
1.5283 | 3.0 | 954 | 1.1389 | 0.8987 |
0.9948 | 4.0 | 1272 | 0.8381 | 0.9142 |
0.7815 | 5.0 | 1590 | 0.7578 | 0.9184 |
Framework versions
- Transformers 4.34.0
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.14.1
- Downloads last month
- 109
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Ridealist/distilbert-base-uncased-finetuned-clinc
Base model
distilbert/distilbert-base-uncasedDataset used to train Ridealist/distilbert-base-uncased-finetuned-clinc
Evaluation results
- Accuracy on clinc_oosvalidation set self-reported0.918