Edit model card

output

This model is a fine-tuned version of michiyasunaga/BioLinkBERT-base on the Rodrigo1771/drugtemist-en-fasttext-9-ner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0071
  • Precision: 0.9312
  • Recall: 0.9329
  • F1: 0.9320
  • Accuracy: 0.9988

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.9989 435 0.0060 0.8714 0.9217 0.8958 0.9981
0.0156 2.0 871 0.0044 0.9183 0.9217 0.92 0.9987
0.0038 2.9989 1306 0.0040 0.8969 0.9404 0.9181 0.9987
0.0025 4.0 1742 0.0045 0.9078 0.9357 0.9215 0.9986
0.0016 4.9989 2177 0.0054 0.9182 0.9096 0.9139 0.9986
0.0011 6.0 2613 0.0053 0.9152 0.9254 0.9203 0.9986
0.0009 6.9989 3048 0.0060 0.9263 0.9366 0.9314 0.9987
0.0009 8.0 3484 0.0059 0.9181 0.9404 0.9291 0.9988
0.0005 8.9989 3919 0.0067 0.9258 0.9301 0.9279 0.9988
0.0003 9.9885 4350 0.0071 0.9312 0.9329 0.9320 0.9988

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
108M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Rodrigo1771/BioLinkBERT-base-drugtemist-en-fasttext-9-ner

Finetuned
(12)
this model

Dataset used to train Rodrigo1771/BioLinkBERT-base-drugtemist-en-fasttext-9-ner

Evaluation results