metadata
license: apache-2.0
base_model: KGSAGAR/distilhubert-finetuned-gtzan
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan-finetuned-gtzan-8
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.94
distilhubert-finetuned-gtzan-finetuned-gtzan-8
This model is a fine-tuned version of KGSAGAR/distilhubert-finetuned-gtzan on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.2264
- Accuracy: 0.94
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.1439 | 1.0 | 57 | 0.1699 | 0.94 |
0.2598 | 2.0 | 114 | 0.1954 | 0.95 |
0.0094 | 3.0 | 171 | 0.2300 | 0.93 |
0.0054 | 4.0 | 228 | 0.2589 | 0.95 |
0.001 | 5.0 | 285 | 0.1919 | 0.96 |
0.039 | 6.0 | 342 | 0.2264 | 0.94 |
Framework versions
- Transformers 4.33.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3