See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/SmolLM-360M-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 8ac21893b3a8deee_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/8ac21893b3a8deee_train_data.json
type:
field_instruction: question
field_output: cypher
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 30
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/91b39cee-f2fc-44ab-9c8f-54506335013c
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
micro_batch_size: 4
mlflow_experiment_name: /tmp/8ac21893b3a8deee_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 40258dbe-8f5b-4b6c-8f78-0a48fa9aafb0
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 40258dbe-8f5b-4b6c-8f78-0a48fa9aafb0
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
91b39cee-f2fc-44ab-9c8f-54506335013c
This model is a fine-tuned version of unsloth/SmolLM-360M-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: nan
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.0 | 0.0015 | 1 | nan |
0.0 | 0.0762 | 50 | nan |
0.0 | 0.1525 | 100 | nan |
0.0 | 0.2287 | 150 | nan |
0.0 | 0.3049 | 200 | nan |
0.0 | 0.3811 | 250 | nan |
0.0 | 0.4574 | 300 | nan |
0.0 | 0.5336 | 350 | nan |
0.0 | 0.6098 | 400 | nan |
0.0 | 0.6860 | 450 | nan |
0.0 | 0.7623 | 500 | nan |
0.0 | 0.8385 | 550 | nan |
0.0 | 0.9147 | 600 | nan |
0.0 | 0.9909 | 650 | nan |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for Romain-XV/91b39cee-f2fc-44ab-9c8f-54506335013c
Base model
HuggingFaceTB/SmolLM-360M
Quantized
HuggingFaceTB/SmolLM-360M-Instruct
Finetuned
unsloth/SmolLM-360M-Instruct