Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/SmolLM-360M-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 8ac21893b3a8deee_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/8ac21893b3a8deee_train_data.json
  type:
    field_instruction: question
    field_output: cypher
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 30
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/91b39cee-f2fc-44ab-9c8f-54506335013c
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
micro_batch_size: 4
mlflow_experiment_name: /tmp/8ac21893b3a8deee_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 40258dbe-8f5b-4b6c-8f78-0a48fa9aafb0
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 40258dbe-8f5b-4b6c-8f78-0a48fa9aafb0
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

91b39cee-f2fc-44ab-9c8f-54506335013c

This model is a fine-tuned version of unsloth/SmolLM-360M-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.0 0.0015 1 nan
0.0 0.0762 50 nan
0.0 0.1525 100 nan
0.0 0.2287 150 nan
0.0 0.3049 200 nan
0.0 0.3811 250 nan
0.0 0.4574 300 nan
0.0 0.5336 350 nan
0.0 0.6098 400 nan
0.0 0.6860 450 nan
0.0 0.7623 500 nan
0.0 0.8385 550 nan
0.0 0.9147 600 nan
0.0 0.9909 650 nan

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
6
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for Romain-XV/91b39cee-f2fc-44ab-9c8f-54506335013c