See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen1.5-1.8B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- b9b47b46d5c01cab_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/b9b47b46d5c01cab_train_data.json
type:
field_input: source
field_instruction: title
field_output: comment
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/b82d5463-6b89-4a7b-bbb2-1c4760d1f05b
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_steps: 518
micro_batch_size: 4
mlflow_experiment_name: /tmp/b9b47b46d5c01cab_train_data.json
model_type: AutoModelForCausalLM
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: e3fe0c30-ee99-44d8-983f-a54143508d00
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: e3fe0c30-ee99-44d8-983f-a54143508d00
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
b82d5463-6b89-4a7b-bbb2-1c4760d1f05b
This model is a fine-tuned version of Qwen/Qwen1.5-1.8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.8768
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 518
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
5.2371 | 0.0017 | 1 | 5.1936 |
4.3345 | 0.0837 | 50 | 4.2566 |
4.1078 | 0.1675 | 100 | 4.1231 |
4.1016 | 0.2512 | 150 | 4.0534 |
3.8452 | 0.3349 | 200 | 4.0041 |
3.9826 | 0.4186 | 250 | 3.9643 |
4.0881 | 0.5024 | 300 | 3.9292 |
3.6798 | 0.5861 | 350 | 3.9057 |
3.9747 | 0.6698 | 400 | 3.8880 |
3.958 | 0.7535 | 450 | 3.8795 |
3.8107 | 0.8373 | 500 | 3.8768 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for Romain-XV/b82d5463-6b89-4a7b-bbb2-1c4760d1f05b
Base model
Qwen/Qwen1.5-1.8B