|
--- |
|
license: gemma |
|
base_model: google/gemma-2-2b |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: collapse_gemma-2-2b_hs2_accumulate_iter2_sftsd0 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# collapse_gemma-2-2b_hs2_accumulate_iter2_sftsd0 |
|
|
|
This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0884 |
|
- Num Input Tokens Seen: 10631280 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 8e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 16 |
|
- seed: 0 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant_with_warmup |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |
|
|:-------------:|:------:|:----:|:---------------:|:-----------------:| |
|
| No log | 0 | 0 | 1.3909 | 0 | |
|
| 1.4986 | 0.0274 | 5 | 1.3330 | 291568 | |
|
| 1.3182 | 0.0548 | 10 | 1.2111 | 587448 | |
|
| 1.2698 | 0.0822 | 15 | 1.1561 | 878712 | |
|
| 1.1636 | 0.1096 | 20 | 1.1285 | 1172912 | |
|
| 1.1254 | 0.1370 | 25 | 1.1113 | 1462432 | |
|
| 1.1388 | 0.1644 | 30 | 1.1125 | 1754352 | |
|
| 1.0632 | 0.1918 | 35 | 1.1148 | 2044296 | |
|
| 1.0854 | 0.2193 | 40 | 1.1123 | 2336344 | |
|
| 1.0012 | 0.2467 | 45 | 1.1118 | 2629112 | |
|
| 0.9763 | 0.2741 | 50 | 1.1233 | 2922992 | |
|
| 0.8928 | 0.3015 | 55 | 1.1148 | 3212144 | |
|
| 0.9294 | 0.3289 | 60 | 1.1208 | 3498808 | |
|
| 0.9218 | 0.3563 | 65 | 1.1160 | 3790240 | |
|
| 0.8805 | 0.3837 | 70 | 1.1220 | 4084176 | |
|
| 0.8095 | 0.4111 | 75 | 1.1249 | 4369920 | |
|
| 0.8382 | 0.4385 | 80 | 1.1195 | 4666480 | |
|
| 0.8528 | 0.4659 | 85 | 1.1163 | 4959872 | |
|
| 0.8016 | 0.4933 | 90 | 1.1147 | 5254800 | |
|
| 0.8473 | 0.5207 | 95 | 1.1142 | 5546992 | |
|
| 0.7947 | 0.5481 | 100 | 1.1122 | 5834416 | |
|
| 0.7363 | 0.5755 | 105 | 1.1072 | 6127320 | |
|
| 0.6941 | 0.6029 | 110 | 1.1062 | 6426288 | |
|
| 0.7032 | 0.6304 | 115 | 1.1080 | 6714832 | |
|
| 0.73 | 0.6578 | 120 | 1.1044 | 7008720 | |
|
| 0.6667 | 0.6852 | 125 | 1.1017 | 7302184 | |
|
| 0.6676 | 0.7126 | 130 | 1.1011 | 7596152 | |
|
| 0.7638 | 0.7400 | 135 | 1.0994 | 7884552 | |
|
| 0.7206 | 0.7674 | 140 | 1.0979 | 8179512 | |
|
| 0.7141 | 0.7948 | 145 | 1.0960 | 8470208 | |
|
| 0.7504 | 0.8222 | 150 | 1.0947 | 8761968 | |
|
| 0.6988 | 0.8496 | 155 | 1.0930 | 9055184 | |
|
| 0.7438 | 0.8770 | 160 | 1.0927 | 9343128 | |
|
| 0.667 | 0.9044 | 165 | 1.0902 | 9637976 | |
|
| 0.7389 | 0.9318 | 170 | 1.0913 | 9930512 | |
|
| 0.7248 | 0.9592 | 175 | 1.0880 | 10226368 | |
|
| 0.7772 | 0.9866 | 180 | 1.0892 | 10513336 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|