collapse_gemma-2-2b_hs2_accumulatesubsample_iter13_sftsd2
This model is a fine-tuned version of google/gemma-2-2b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.2080
- Num Input Tokens Seen: 5026384
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 8
- eval_batch_size: 16
- seed: 2
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
---|---|---|---|---|
No log | 0 | 0 | 1.3909 | 0 |
1.3546 | 0.0532 | 5 | 1.2770 | 264160 |
1.0602 | 0.1063 | 10 | 1.2137 | 532584 |
0.9619 | 0.1595 | 15 | 1.2117 | 800536 |
0.8456 | 0.2126 | 20 | 1.2305 | 1064552 |
0.8874 | 0.2658 | 25 | 1.2288 | 1334288 |
0.7271 | 0.3189 | 30 | 1.2471 | 1604456 |
0.6848 | 0.3721 | 35 | 1.2268 | 1869408 |
0.66 | 0.4252 | 40 | 1.2269 | 2137928 |
0.5898 | 0.4784 | 45 | 1.2345 | 2405736 |
0.5111 | 0.5316 | 50 | 1.2218 | 2670688 |
0.5592 | 0.5847 | 55 | 1.2104 | 2939792 |
0.4165 | 0.6379 | 60 | 1.2177 | 3205680 |
0.5257 | 0.6910 | 65 | 1.2159 | 3475424 |
0.3911 | 0.7442 | 70 | 1.2172 | 3741984 |
0.4243 | 0.7973 | 75 | 1.2121 | 4012288 |
0.512 | 0.8505 | 80 | 1.2124 | 4271576 |
0.473 | 0.9037 | 85 | 1.2070 | 4541040 |
0.3554 | 0.9568 | 90 | 1.2051 | 4811336 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Model tree for RylanSchaeffer/collapse_gemma-2-2b_hs2_accumulatesubsample_iter13_sftsd2
Base model
google/gemma-2-2b