|
--- |
|
license: gemma |
|
base_model: google/gemma-2-2b |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter16_sftsd2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# collapse_gemma-2-2b_hs2_accumulatesubsample_iter16_sftsd2 |
|
|
|
This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2037 |
|
- Num Input Tokens Seen: 5033336 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 8e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 16 |
|
- seed: 2 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant_with_warmup |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |
|
|:-------------:|:------:|:----:|:---------------:|:-----------------:| |
|
| No log | 0 | 0 | 1.3909 | 0 | |
|
| 1.4057 | 0.0531 | 5 | 1.2789 | 266712 | |
|
| 0.9946 | 0.1061 | 10 | 1.2203 | 535376 | |
|
| 0.9751 | 0.1592 | 15 | 1.2176 | 817176 | |
|
| 0.8049 | 0.2122 | 20 | 1.2373 | 1083600 | |
|
| 0.7624 | 0.2653 | 25 | 1.2358 | 1352608 | |
|
| 0.7157 | 0.3183 | 30 | 1.2521 | 1622152 | |
|
| 0.54 | 0.3714 | 35 | 1.2346 | 1882312 | |
|
| 0.5442 | 0.4244 | 40 | 1.2433 | 2149600 | |
|
| 0.5808 | 0.4775 | 45 | 1.2429 | 2416240 | |
|
| 0.4783 | 0.5305 | 50 | 1.2305 | 2682968 | |
|
| 0.5364 | 0.5836 | 55 | 1.2256 | 2950376 | |
|
| 0.5619 | 0.6366 | 60 | 1.2167 | 3214352 | |
|
| 0.5027 | 0.6897 | 65 | 1.2278 | 3481120 | |
|
| 0.4447 | 0.7427 | 70 | 1.2205 | 3747064 | |
|
| 0.3629 | 0.7958 | 75 | 1.2205 | 4015440 | |
|
| 0.5072 | 0.8488 | 80 | 1.2094 | 4281048 | |
|
| 0.5246 | 0.9019 | 85 | 1.2102 | 4550336 | |
|
| 0.5123 | 0.9549 | 90 | 1.2077 | 4814152 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|