|
--- |
|
license: gemma |
|
base_model: google/gemma-2-2b |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: collapse_gemma-2-2b_hs2_accumulate_iter3_sftsd1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# collapse_gemma-2-2b_hs2_accumulate_iter3_sftsd1 |
|
|
|
This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1371 |
|
- Num Input Tokens Seen: 5264318 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 8e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 16 |
|
- seed: 1 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant_with_warmup |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |
|
|:-------------:|:------:|:----:|:---------------:|:-----------------:| |
|
| No log | 0 | 0 | 1.3909 | 0 | |
|
| 1.4103 | 0.0538 | 5 | 1.2645 | 285920 | |
|
| 1.3042 | 0.1075 | 10 | 1.1766 | 573248 | |
|
| 1.2148 | 0.1613 | 15 | 1.1511 | 853008 | |
|
| 1.1212 | 0.2151 | 20 | 1.1320 | 1136200 | |
|
| 1.0406 | 0.2688 | 25 | 1.1354 | 1412848 | |
|
| 1.1139 | 0.3226 | 30 | 1.1353 | 1691488 | |
|
| 0.93 | 0.3763 | 35 | 1.1526 | 1969840 | |
|
| 0.9491 | 0.4301 | 40 | 1.1464 | 2249384 | |
|
| 0.8255 | 0.4839 | 45 | 1.1531 | 2529768 | |
|
| 0.8226 | 0.5376 | 50 | 1.1457 | 2813872 | |
|
| 0.8505 | 0.5914 | 55 | 1.1510 | 3105400 | |
|
| 0.7052 | 0.6452 | 60 | 1.1498 | 3391880 | |
|
| 0.7749 | 0.6989 | 65 | 1.1413 | 3678440 | |
|
| 0.6941 | 0.7527 | 70 | 1.1457 | 3959096 | |
|
| 0.6859 | 0.8065 | 75 | 1.1410 | 4248384 | |
|
| 0.5947 | 0.8602 | 80 | 1.1435 | 4534176 | |
|
| 0.6197 | 0.9140 | 85 | 1.1393 | 4811344 | |
|
| 0.5752 | 0.9677 | 90 | 1.1362 | 5094360 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|