|
--- |
|
license: gemma |
|
base_model: google/gemma-2-2b |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter5_sftsd1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# collapse_gemma-2-2b_hs2_accumulatesubsample_iter5_sftsd1 |
|
|
|
This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1596 |
|
- Num Input Tokens Seen: 5092792 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 8e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 16 |
|
- seed: 1 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant_with_warmup |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |
|
|:-------------:|:------:|:----:|:---------------:|:-----------------:| |
|
| No log | 0 | 0 | 1.3909 | 0 | |
|
| 1.396 | 0.0535 | 5 | 1.2688 | 272480 | |
|
| 1.1748 | 0.1070 | 10 | 1.1838 | 547328 | |
|
| 1.12 | 0.1605 | 15 | 1.1718 | 821600 | |
|
| 1.0808 | 0.2140 | 20 | 1.1633 | 1094936 | |
|
| 0.8774 | 0.2676 | 25 | 1.1724 | 1374424 | |
|
| 0.7922 | 0.3211 | 30 | 1.1880 | 1646160 | |
|
| 0.8423 | 0.3746 | 35 | 1.1878 | 1922560 | |
|
| 0.7508 | 0.4281 | 40 | 1.1777 | 2201456 | |
|
| 0.6903 | 0.4816 | 45 | 1.1815 | 2480912 | |
|
| 0.6497 | 0.5351 | 50 | 1.1695 | 2756496 | |
|
| 0.6544 | 0.5886 | 55 | 1.1748 | 3029896 | |
|
| 0.5257 | 0.6421 | 60 | 1.1744 | 3298912 | |
|
| 0.607 | 0.6957 | 65 | 1.1630 | 3580736 | |
|
| 0.5229 | 0.7492 | 70 | 1.1702 | 3850984 | |
|
| 0.4844 | 0.8027 | 75 | 1.1632 | 4119888 | |
|
| 0.5335 | 0.8562 | 80 | 1.1608 | 4389384 | |
|
| 0.539 | 0.9097 | 85 | 1.1614 | 4662512 | |
|
| 0.6048 | 0.9632 | 90 | 1.1580 | 4929312 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|