|
--- |
|
license: gemma |
|
base_model: google/gemma-2-2b |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter7_sftsd1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# collapse_gemma-2-2b_hs2_accumulatesubsample_iter7_sftsd1 |
|
|
|
This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1675 |
|
- Num Input Tokens Seen: 5022496 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 8e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 16 |
|
- seed: 1 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant_with_warmup |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |
|
|:-------------:|:------:|:----:|:---------------:|:-----------------:| |
|
| No log | 0 | 0 | 1.3909 | 0 | |
|
| 1.4117 | 0.0532 | 5 | 1.2712 | 266592 | |
|
| 1.1724 | 0.1063 | 10 | 1.1918 | 533048 | |
|
| 1.0606 | 0.1595 | 15 | 1.1870 | 799288 | |
|
| 0.8876 | 0.2126 | 20 | 1.2049 | 1066760 | |
|
| 0.7677 | 0.2658 | 25 | 1.2150 | 1336544 | |
|
| 0.823 | 0.3189 | 30 | 1.2520 | 1607968 | |
|
| 0.6771 | 0.3721 | 35 | 1.2333 | 1874784 | |
|
| 0.6136 | 0.4252 | 40 | 1.2067 | 2139928 | |
|
| 0.6083 | 0.4784 | 45 | 1.2110 | 2411200 | |
|
| 0.6399 | 0.5316 | 50 | 1.1935 | 2679224 | |
|
| 0.5353 | 0.5847 | 55 | 1.1854 | 2944064 | |
|
| 0.5082 | 0.6379 | 60 | 1.1890 | 3209088 | |
|
| 0.4659 | 0.6910 | 65 | 1.1827 | 3473936 | |
|
| 0.5292 | 0.7442 | 70 | 1.1786 | 3744800 | |
|
| 0.4468 | 0.7973 | 75 | 1.1750 | 4009560 | |
|
| 0.453 | 0.8505 | 80 | 1.1796 | 4274632 | |
|
| 0.4064 | 0.9037 | 85 | 1.1718 | 4536408 | |
|
| 0.4862 | 0.9568 | 90 | 1.1720 | 4804824 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|