|
--- |
|
license: gemma |
|
base_model: google/gemma-2-2b |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter9_sftsd1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# collapse_gemma-2-2b_hs2_accumulatesubsample_iter9_sftsd1 |
|
|
|
This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1837 |
|
- Num Input Tokens Seen: 5013888 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 8e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 16 |
|
- seed: 1 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant_with_warmup |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |
|
|:-------------:|:------:|:----:|:---------------:|:-----------------:| |
|
| No log | 0 | 0 | 1.3909 | 0 | |
|
| 1.4549 | 0.0530 | 5 | 1.2734 | 272264 | |
|
| 1.0822 | 0.1060 | 10 | 1.1956 | 535104 | |
|
| 0.9981 | 0.1590 | 15 | 1.1870 | 799192 | |
|
| 0.8748 | 0.2121 | 20 | 1.2126 | 1064056 | |
|
| 0.8208 | 0.2651 | 25 | 1.2219 | 1334048 | |
|
| 0.7611 | 0.3181 | 30 | 1.2282 | 1604648 | |
|
| 0.6888 | 0.3711 | 35 | 1.2310 | 1865896 | |
|
| 0.5709 | 0.4241 | 40 | 1.2214 | 2142528 | |
|
| 0.5934 | 0.4771 | 45 | 1.2378 | 2406648 | |
|
| 0.532 | 0.5302 | 50 | 1.1954 | 2673848 | |
|
| 0.557 | 0.5832 | 55 | 1.2070 | 2936776 | |
|
| 0.4641 | 0.6362 | 60 | 1.2062 | 3194848 | |
|
| 0.4939 | 0.6892 | 65 | 1.1957 | 3464616 | |
|
| 0.3887 | 0.7422 | 70 | 1.1948 | 3732256 | |
|
| 0.4909 | 0.7952 | 75 | 1.1860 | 4002936 | |
|
| 0.4297 | 0.8482 | 80 | 1.1849 | 4272664 | |
|
| 0.3908 | 0.9013 | 85 | 1.1861 | 4538816 | |
|
| 0.3598 | 0.9543 | 90 | 1.1830 | 4797920 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|