|
--- |
|
license: gemma |
|
base_model: google/gemma-2-9b |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: collapse_gemma-2-9b_hs2_accumulate_iter1_sftsd1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# collapse_gemma-2-9b_hs2_accumulate_iter1_sftsd1 |
|
|
|
This model is a fine-tuned version of [google/gemma-2-9b](https://huggingface.co/google/gemma-2-9b) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9313 |
|
- Num Input Tokens Seen: 5254884 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 8e-06 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 16 |
|
- seed: 1 |
|
- gradient_accumulation_steps: 32 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant_with_warmup |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |
|
|:-------------:|:------:|:----:|:---------------:|:-----------------:| |
|
| No log | 0 | 0 | 1.2335 | 0 | |
|
| 1.0811 | 0.0511 | 5 | 1.0631 | 260128 | |
|
| 1.0247 | 0.1021 | 10 | 0.9817 | 527396 | |
|
| 0.9713 | 0.1532 | 15 | 0.9695 | 803280 | |
|
| 1.0094 | 0.2043 | 20 | 0.9637 | 1074404 | |
|
| 0.9265 | 0.2553 | 25 | 0.9583 | 1348060 | |
|
| 1.0149 | 0.3064 | 30 | 0.9544 | 1614960 | |
|
| 0.9107 | 0.3575 | 35 | 0.9504 | 1884844 | |
|
| 0.9349 | 0.4086 | 40 | 0.9473 | 2154208 | |
|
| 0.9956 | 0.4596 | 45 | 0.9446 | 2424544 | |
|
| 0.8864 | 0.5107 | 50 | 0.9431 | 2690292 | |
|
| 0.9664 | 0.5618 | 55 | 0.9416 | 2962944 | |
|
| 0.9601 | 0.6128 | 60 | 0.9398 | 3234692 | |
|
| 0.9302 | 0.6639 | 65 | 0.9377 | 3510980 | |
|
| 0.9355 | 0.7150 | 70 | 0.9365 | 3790388 | |
|
| 0.9319 | 0.7660 | 75 | 0.9356 | 4069200 | |
|
| 1.0081 | 0.8171 | 80 | 0.9351 | 4338748 | |
|
| 0.9418 | 0.8682 | 85 | 0.9336 | 4606552 | |
|
| 0.8993 | 0.9192 | 90 | 0.9321 | 4877900 | |
|
| 0.9327 | 0.9703 | 95 | 0.9321 | 5147172 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|