File size: 13,758 Bytes
daa3426
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4d25bfc1f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4d25bfc280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4d25bfc310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4d25bfc3a0>", "_build": "<function ActorCriticPolicy._build at 0x7f4d25bfc430>", "forward": "<function ActorCriticPolicy.forward at 0x7f4d25bfc4c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4d25bfc550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4d25bfc5e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4d25bfc670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4d25bfc700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4d25bfc790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4d25bfc820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4ccb8adc00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687367217229327448, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABiW70LQLk9W9f0PZ7PE758P0084mi/OwAAAAAAAAAAjfnDvVwzWrpWASU412pRM76pzjna0T63AACAPwAAgD8aPHy95mH3Pinoxz03q3W+L/r8vK5R2LwAAAAAAAAAAHPvDT5YStA9kDpBvv0OQ7539s+8oY+BvAAAAAAAAAAA4BEuvu/54j7u9Bs+q5eAvtv99Lp2p2O8AAAAAAAAAABAg7K9Hxalu/o8vDsKdJA88qMmPXCQdL0AAAAAAACAP5rwrzyqR7g/QnPZPf2LML7GLyU92ON5PQAAAAAAAAAAzd6BPJRA4T0cYzo+a44Vvuw2KD2qdoq8AAAAAAAAAADQUIq+8yIFP0ss+zgA1ZC+HRjZvZxziz0AAAAAAAAAAJqzBT4KbXy72B9ROr9ZiLgqbMO8KGxpuQAAgD8AAIA/YEQ2PqJZiT+aoY8+knhuvso9XD6zhak9AAAAAAAAAADAcss95tOnP66arz5u45u+m4VdPn7oCT4AAAAAAAAAAHMJiD0UvJC63DQsOGC1HTPfeCe5S7ZHtwAAgD8AAIA/mptoPI+eU7q0cAI6lVc1NIRtojp9PBi5AACAPwAAgD8a7nm9e7aYul3JWrk8rFi0SB/6OUrWfDgAAIA/AACAP7MjEj2u35G6Ih4YuaYX+7PCSfC64jMwOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGR1vu5SWJKMAWyUTegDjAF0lEdAlSNVkQPI4nV9lChoBkdAaMGlIEr5I2gHTegDaAhHQJUpA5vLowF1fZQoaAZHQEEQGdI5HVhoB00BAWgIR0CVLGyTY/VzdX2UKGgGR0BwCv8rI5o5aAdNZwJoCEdAlSx/EGZ/kXV9lChoBkdAbfKmdAgPmWgHTaUDaAhHQJUuiJoCdSV1fZQoaAZHQF6JozeoDPpoB03oA2gIR0CVNQpPykKvdX2UKGgGR0BeWNKmKqGUaAdN6ANoCEdAlTe9xQzk63V9lChoBkdAYxmYuTRplGgHTegDaAhHQJU/zzOHFgl1fZQoaAZHQHIV4SDh99doB02dAWgIR0CVRkZG8VYZdX2UKGgGR0Boq38CPp6haAdN6ANoCEdAlUjG7FsHjnV9lChoBkdAa+GBBiTdL2gHTVEBaAhHQJVgGKdhAnl1fZQoaAZHQGZMnJkoWpJoB03oA2gIR0CVYKllbu+idX2UKGgGR0BfH55VwPy1aAdN6ANoCEdAlWGz1K5CnnV9lChoBkdAceNDVYp2EGgHTSEDaAhHQJVjdxxT8511fZQoaAZHQHCveIMz/IdoB00EAmgIR0CVY+lZX+2mdX2UKGgGR0Bjqv3g1m8NaAdN6ANoCEdAlWSRnanJk3V9lChoBkdAcHo8yeqaPWgHTXkBaAhHQJVkxYISlFd1fZQoaAZHQGWbsURFqi5oB03oA2gIR0CVZcvH93r2dX2UKGgGR0Bm9hBTn7pFaAdN6ANoCEdAlWnQx8D0UXV9lChoBkdAY9uKR+z+m2gHTegDaAhHQJVwPTmW+oN1fZQoaAZHQGLqxwqAjIJoB03oA2gIR0CVdPlZHNHIdX2UKGgGR0ByPibrkbPyaAdNagFoCEdAlXbp3PiT+3V9lChoBkdAb3Tnr6ciGGgHTXIBaAhHQJV7T7m+0w91fZQoaAZHQHJXaHCXQdFoB03FAWgIR0CVe2NTtLL7dX2UKGgGR0BhXBUipvP1aAdN6ANoCEdAlXua3EyckXV9lChoBkdAb2jkaMrEtWgHTdUDaAhHQJV95kVeruJ1fZQoaAZHQG5WdgWrOqxoB00oAmgIR0CVgj93bEgodX2UKGgGR0ByKAELYwqRaAdNAgJoCEdAlYPVeWv8qHV9lChoBkdAUFyBK+SKWWgHS/poCEdAlYjenAIppnV9lChoBkdAbPquGsV+JGgHTYMBaAhHQJWSZRm9QGh1fZQoaAZHQHExyo86mwdoB02NAmgIR0CVkwQ2uPmxdX2UKGgGR0Byd80ALiMpaAdNUgFoCEdAlZVG4Vh1DHV9lChoBkdAZVnw4KhL5GgHTegDaAhHQJWXeTfR/mV1fZQoaAZHQF2ud8zAN5NoB03oA2gIR0CVnTRvm5lOdX2UKGgGR0BvdaNMoMKDaAdN0gNoCEdAlZ4f9UCJXXV9lChoBkdAcDxqdpZfUmgHTTgCaAhHQJWzQbIcR151fZQoaAZHQGWUBhpg1FZoB03oA2gIR0CVtXaPCEYgdX2UKGgGR0BetlZDArQPaAdN6ANoCEdAlbag3YL9dnV9lChoBkdAbesP3i704GgHTVIBaAhHQJW3kV6/qPh1fZQoaAZHQHCBnarWAgBoB02BAmgIR0CVubuM+/xldX2UKGgGR0BlebbpNbkfaAdN6ANoCEdAlbv9zS1E3XV9lChoBkdAbiVL0SRKYmgHTXEDaAhHQJW8EFW4mTl1fZQoaAZHQHFj3QMQVbloB01hAmgIR0CVwR163RXwdX2UKGgGR0BwISGO+7DmaAdNFwJoCEdAlcOsefZmI3V9lChoBkdAcS2pwS8J2WgHTXoBaAhHQJXGSPgeii91fZQoaAZHQHFv8RlHz6JoB02PAWgIR0CVxrNiYsundX2UKGgGR0Bxyu9wm3OOaAdNbQNoCEdAlcb94mkWRHV9lChoBkdAbmWVt4zJp2gHTUADaAhHQJXLZlpXZGt1fZQoaAZHQHAaK68QI2RoB01lA2gIR0CVzipLmITHdX2UKGgGR0BwJCtaIN3GaAdNOwFoCEdAlc5DJuEVWXV9lChoBkdAb7fwl0HQhWgHTUABaAhHQJXQWITGo751fZQoaAZHQHHBJC8e0XxoB035AWgIR0CV1MDQqqffdX2UKGgGR0Bv/BRuTA32aAdNDgJoCEdAlda9Hxz7uXV9lChoBkdAcIpyJsO5KGgHTSwBaAhHQJXXPlQuVX51fZQoaAZHQEcOwdKdxyZoB0vyaAhHQJXabEWIoE11fZQoaAZHQHA/zfNzKcNoB01bA2gIR0CV2mk0Jng6dX2UKGgGR0Bx2uIl+mWMaAdN3gJoCEdAld/2zSkTH3V9lChoBkdAYjA6jnFHa2gHTegDaAhHQJXgHqHGjsV1fZQoaAZHQGyE/d69kBloB00BAmgIR0CV4DwPRRdhdX2UKGgGR0BEOaWgOBlMaAdL3GgIR0CV4pciGFi8dX2UKGgGR0Bx+E/yGzrvaAdNUAJoCEdAlebcwDeTFHV9lChoBkdAcEZ1CPZIx2gHTT4BaAhHQJXok9lmOEN1fZQoaAZHQG7ZvzOHFgloB03HAmgIR0CV6UeumrKedX2UKGgGR0BswyDsdDIBaAdNHAFoCEdAlephHoX9BXV9lChoBkdAY/9s1KoQ4GgHTegDaAhHQJXtqNlyzX11fZQoaAZHQG8GJ6IFeOZoB01xAmgIR0CWCezCDVYqdX2UKGgGR0BurgQz1sciaAdNkANoCEdAlgphWkrPMXV9lChoBkdARHD7sOXmeWgHS/VoCEdAlgp7D/EOy3V9lChoBkdAbpe5Dqnm72gHTUkBaAhHQJYMJo7FKkF1fZQoaAZHQHAZFFpfx+doB03bAmgIR0CWDDSwW3z+dX2UKGgGR0BwGOyB06o3aAdNMgJoCEdAlg0UhzNliHV9lChoBkdAcP7hf0Eov2gHTaIBaAhHQJYQHE/B3zN1fZQoaAZHQHBEDWXkYGdoB025AWgIR0CWEPDk2gnMdX2UKGgGR0BxF8LF4s3AaAdNMgFoCEdAlhHUFnqVyHV9lChoBkdAcOxODJ2dNGgHTUsBaAhHQJYTWRgZ0jl1fZQoaAZHQGRK1gQYk3VoB03oA2gIR0CWFJ4Uvf0mdX2UKGgGR0Bw+rmmtQsPaAdN2gJoCEdAlhmQRK6FunV9lChoBkdAci+vwEyLymgHTYEBaAhHQJYbt1gYxcp1fZQoaAZHQGDzq814xDdoB03oA2gIR0CWHYbMHKOldX2UKGgGR0BwStBzFMqSaAdNQwFoCEdAliAZ3xFy73V9lChoBkdAcHdlw97ngmgHTX8CaAhHQJYhOXVsk6d1fZQoaAZHQHCzhaX8fmtoB00cAmgIR0CWIWgbIcR2dX2UKGgGR0Bxdd5KODJ2aAdNVAFoCEdAliH9i+cpb3V9lChoBkdAcMjWnjyWiWgHTfABaAhHQJYicbjtG/h1fZQoaAZHQG+T6C+UQkJoB00fAmgIR0CWJJIxgy/LdX2UKGgGR0Bw8udd3SrpaAdNCQJoCEdAliVtLxqfvnV9lChoBkdAcJioOhCdBmgHTScBaAhHQJYo4Uh3aBZ1fZQoaAZHQG+YUipvP1NoB034AmgIR0CWKdgIhQnAdX2UKGgGR0Bx3YKArhBJaAdNtgFoCEdAliryQDFId3V9lChoBkdAcOwwWFev6mgHTR4CaAhHQJYsyD+R5kd1fZQoaAZHQHG37CzkZJloB03/AWgIR0CWLQVZcLSedX2UKGgGR0Bxd5qveP7vaAdNdgFoCEdAli6JbMX7+HV9lChoBkdAcVpo11nuiWgHTSkBaAhHQJYvmL61stV1fZQoaAZHQHBIq3RXwLFoB00mAWgIR0CWMDQSzw+ddX2UKGgGR0BwVuTJQtSRaAdNrwFoCEdAljPxbB42THV9lChoBkdAbGr0+1SflWgHTYkBaAhHQJY0VR4yGi51fZQoaAZHQG15exwAEMdoB004AWgIR0CWNhBBzFMqdX2UKGgGR0BwUoEfT1CgaAdNWgNoCEdAljlMzdk8R3V9lChoBkdAcME44Ia99WgHTYoBaAhHQJY6tBeHBUJ1fZQoaAZHQHGCfEbYK6ZoB03AAWgIR0CWO1kcCHRDdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.9999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}