File size: 5,350 Bytes
c100893
 
0818340
c100893
 
 
d7dfada
63bab77
c100893
758d33d
c100893
 
1ffd489
 
 
c100893
758d33d
0dca21d
6bb0093
c100893
 
 
 
b13807a
0dca21d
 
 
 
 
 
 
 
 
 
 
 
1ffd489
63bab77
 
0dca21d
 
 
1ffd489
0dca21d
 
 
 
 
 
 
 
 
 
 
 
 
 
1ffd489
0dca21d
 
 
 
 
 
 
 
 
 
 
 
 
 
1ffd489
0dca21d
1ffd489
0dca21d
1ffd489
6bb0093
1ffd489
c100893
63bab77
 
c100893
63bab77
c100893
 
758d33d
 
 
 
 
 
 
6bb0093
c100893
 
 
 
 
 
 
 
 
63bab77
6bb0093
63bab77
 
 
 
 
 
 
 
6bb0093
758d33d
c100893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
library_name: transformers
license: apache-2.0
---


# Model Details
Model Developers: Sogang University SGEconFinlab(<<https://sc.sogang.ac.kr/aifinlab/>)


### Model Description

This model is a language model specialized in economics and finance. This was learned with various economic/finance-related data.
The data sources are listed below, and we are not releasing the data we trained on because it was used for research/policy purposes. 
If you wish to use the original data rather than our training data, please contact the original author directly for permission to use it.

- **Developed by:** Sogang University SGEconFinlab(<https://sc.sogang.ac.kr/aifinlab/>)
- **License:** apache-2.0
- **Base Model:** yanolja/KoSOLAR-10.7B-v0.2(<https://huggingface.co/yanolja/KoSOLAR-10.7B-v0.2>)


## How to Get Started with the Model


    peft_model_id = "SGEcon/KoSOLAR-10.7B-v0.2_fin_v4"
    config = PeftConfig.from_pretrained(peft_model_id)
    bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch.bfloat16
    )
    model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=bnb_config, device_map={"":0})
    model = PeftModel.from_pretrained(model, peft_model_id)
    tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
    model.eval()


-----
    import re
    def gen(x):
        inputs = tokenizer(f"### ์งˆ๋ฌธ: {x}\n\n### ๋‹ต๋ณ€:", return_tensors='pt', return_token_type_ids=False)
    
        # Move data to GPU (if available)
        inputs = {k: v.to(device="cuda" if torch.cuda.is_available() else "cpu") for k, v in inputs.items()}

        gened = model.generate(
            **inputs,
            max_new_tokens=256,
            early_stopping=True,
            num_return_sequences=4,  
            do_sample=True,
            eos_token_id=tokenizer.eos_token_id,  
            temperature=0.9,
            top_p=0.8,
            top_k=50
        )
    
        complete_answers = []
        for gen_seq in gened:
            decoded = tokenizer.decode(gen_seq, skip_special_tokens=True).strip()

            # Extract only the text after the string "### ๋‹ต๋ณ€:"
            first_answer_start_idx = decoded.find("### ๋‹ต๋ณ€:") + len("### ๋‹ต๋ณ€:")
            temp_answer = decoded[first_answer_start_idx:].strip()

            # Extract only text up to the second "### ๋‹ต๋ณ€:" string
            second_answer_start_idx = temp_answer.find("### ๋‹ต๋ณ€:")
            if second_answer_start_idx != -1:
                complete_answer = temp_answer[:second_answer_start_idx].strip()
            else:
                complete_answer = temp_answer  # ๋‘ ๋ฒˆ์งธ "### ๋‹ต๋ณ€:"์ด ์—†๋Š” ๊ฒฝ์šฐ ์ „์ฒด ๋‹ต๋ณ€ ๋ฐ˜ํ™˜
        
            complete_answers.append(complete_answer)
    
        return complete_answers


    
## Training Details
 First, we loaded the base model quantized to 4 bits. It can significantly reduce the amount of memory required to store the model's weights and intermediate computation results, which is beneficial for deploying models in environments with limited memory resources. It can also provide faster inference speeds.
 Then, 

 
### Training Data

1. ํ•œ๊ตญ์€ํ–‰: ๊ฒฝ์ œ๊ธˆ์œต์šฉ์–ด 700์„ (<https://www.bok.or.kr/portal/bbs/B0000249/view.do?nttId=235017&menuNo=200765>)
2. ๊ธˆ์œต๊ฐ๋…์›: ๊ธˆ์œต์†Œ๋น„์ž ์ •๋ณด ํฌํ„ธ ํŒŒ์ธ ๊ธˆ์œต์šฉ์–ด์‚ฌ์ „(<https://fine.fss.or.kr/fine/fnctip/fncDicary/list.do?menuNo=900021>)
3. KDI ๊ฒฝ์ œ์ •๋ณด์„ผํ„ฐ: ์‹œ์‚ฌ ์šฉ์–ด์‚ฌ์ „(<https://eiec.kdi.re.kr/material/wordDic.do>)
4. ํ•œ๊ตญ๊ฒฝ์ œ์‹ ๋ฌธ/ํ•œ๊ฒฝ๋‹ท์ปด: ํ•œ๊ฒฝ๊ฒฝ์ œ์šฉ์–ด์‚ฌ์ „(<https://terms.naver.com/list.naver?cid=42107&categoryId=42107>), ์˜ค๋Š˜์˜ TESAT(<https://www.tesat.or.kr/bbs.frm.list/tesat_study?s_cateno=1>), ์˜ค๋Š˜์˜ ์ฃผ๋‹ˆ์–ด TESAT(<https://www.tesat.or.kr/bbs.frm.list/tesat_study?s_cateno=5>), ์ƒ๊ธ€์ƒ๊ธ€ํ•œ๊ฒฝ(<https://sgsg.hankyung.com/tesat/study>)
5. ์ค‘์†Œ๋ฒค์ฒ˜๊ธฐ์—…๋ถ€/๋Œ€ํ•œ๋ฏผ๊ตญ์ •๋ถ€: ์ค‘์†Œ๋ฒค์ฒ˜๊ธฐ์—…๋ถ€ ์ „๋ฌธ์šฉ์–ด(<https://terms.naver.com/list.naver?cid=42103&categoryId=42103>)
6. ๊ณ ์„ฑ์‚ผ/๋ฒ•๋ฌธ์ถœํŒ์‚ฌ: ํšŒ๊ณ„ยท์„ธ๋ฌด ์šฉ์–ด์‚ฌ์ „(<https://terms.naver.com/list.naver?cid=51737&categoryId=51737>)
7. ๋งจํ์˜ ๊ฒฝ์ œํ•™ 8ํŒ Word Index
8. yanolja/KoSOLAR-10.7B-v0.2(<yanolja/KoSOLAR-10.7B-v0.2>)


### Training Procedure 

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->


#### Training Hyperparameters

|Hyperparameter|SGEcon/KoSOLAR-10.7B-v0.2_fin_v4|
|------|---|
|Lora Method|Lora|
|load in 4 bit|True|
|learning rate|1e-5|
|lr scheduler|linear|
|lora alpa|16|
|lora rank|16|
|lora dropout|0.05|
|optim|paged_adamw_32bit|
|target_modules|q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj, lm_head|
   
## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary


## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->