|
--- |
|
license: apache-2.0 |
|
tags: |
|
- bert |
|
- kcbert |
|
- unsmile |
|
--- |
|
|
|
# SJ-Donald/kcbert-large-unsmile |
|
|
|
SJ-Donald/kcbert-large-unsmile is pretrained model using follow: |
|
|
|
## Models |
|
|
|
* [beomi/kcbert-large](https://huggingface.co/beomi/kcbert-large) |
|
|
|
## Datasets |
|
|
|
* [smilegate-ai/kor_unsmile](smilegate-ai/kor_unsmile) |
|
|
|
## How to use |
|
|
|
```Python |
|
from transformers import TextClassificationPipeline, BertForSequenceClassification, AutoTokenizer+ |
|
|
|
model_name = 'SJ-Donald/kcbert-large-unsmile' |
|
model = BertForSequenceClassification.from_pretrained(model_name) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
pipe = TextClassificationPipeline( |
|
model = model, |
|
tokenizer = tokenizer, |
|
device = 0, # cpu: -1, gpu: gpu number |
|
return_all_scores = True, |
|
function_to_apply = 'sigmoid' |
|
) |
|
|
|
for result in pipe("μ΄λμ μ¬μλ κ²μμ νλ©΄ μλλ€")[0]: |
|
print(result) |
|
|
|
{'label': 'μ¬μ±/κ°μ‘±', 'score': 0.9793611168861389} |
|
{'label': 'λ¨μ±', 'score': 0.006330598145723343} |
|
{'label': 'μ±μμμ', 'score': 0.007870828732848167} |
|
{'label': 'μΈμ’
/κ΅μ ', 'score': 0.010810344479978085} |
|
{'label': 'μ°λ Ή', 'score': 0.020540334284305573} |
|
{'label': 'μ§μ', 'score': 0.015790466219186783} |
|
{'label': 'μ’
κ΅', 'score': 0.014563685283064842} |
|
{'label': 'κΈ°ν νμ€', 'score': 0.04097242280840874} |
|
{'label': 'μ
ν/μμ€', 'score': 0.019168635830283165} |
|
{'label': 'clean', 'score': 0.014866289682686329} |
|
``` |