SIGMA / FINETUNE.md
Mohammadreza Salehidehnavi
Feat: Instructions has been added
c98a7cc

Fine-tuning SIGMA

Original Implementation

The implementation of our SIGMA supports multi-node distributed training. We provide the off-the-shelf scripts in the scripts folder.

  • For example, to fine-tune SIGMA ViT-Base on Something-Something V2 with 64 GPUs (8 nodes x 8 GPUs), you can run
OUTPUT_DIR='YOUR_PATH/ssv2_SIGMA_pretrain_base_patch16_224_frame_16x2_tube_mask_ratio_0.9_e800/eval_lr_5e-4_epoch_50'
DATA_PATH='YOUR_PATH/list_ssv2'
MODEL_PATH='YOUR_PATH/ssv2_SIGMA_pretrain_base_patch16_224_frame_16x2_tube_mask_ratio_0.9_e800/checkpoint-799.pth'

OMP_NUM_THREADS=1 python -m torch.distributed.launch --nproc_per_node=8 \
    --master_port 12320 --nnodes=8 \
    --node_rank=0 --master_addr=$ip_node_0 \
    run_class_finetuning.py \
    --model vit_base_patch16_224 \
    --data_set SSV2 \
    --nb_classes 174 \
    --data_path ${DATA_PATH} \
    --finetune ${MODEL_PATH} \
    --log_dir ${OUTPUT_DIR} \
    --output_dir ${OUTPUT_DIR} \
    --batch_size 8 \
    --num_sample 1 \
    --input_size 224 \
    --short_side_size 224 \
    --save_ckpt_freq 10 \
    --num_frames 16 \
    --opt adamw \
    --lr 5e-4 \
    --opt_betas 0.9 0.999 \
    --weight_decay 0.05 \
    --epochs 50 \
    --dist_eval \
    --test_num_segment 2 \
    --test_num_crop 3 \
    --enable_deepspeed 

on the first node. On other nodes, run the same command with --node_rank 1, ..., --node_rank 7 respectively. --master_addr is set as the ip of the node 0.

  • For example, to fine-tune SIGMA ViT-Base on Kinetics400 with 64 GPUs (8 nodes x 8 GPUs), you can run

    OUTPUT_DIR='YOUR_PATH/k400_SIGMA_pretrain_base_patch16_224_frame_16x4_tube_mask_ratio_0.9_e800/eval_lr_1e-3_epoch_100'
    DATA_PATH='YOUR_PATH/list_kinetics-400'
    MODEL_PATH='YOUR_PATH/k400_SIGMA_pretrain_base_patch16_224_frame_16x4_tube_mask_ratio_0.9_e800/checkpoint-799.pth'
    
    OMP_NUM_THREADS=1 python -m torch.distributed.launch --nproc_per_node=8 \
        --master_port 12320 --nnodes=8 \
        --node_rank=0 --master_addr=$ip_node_0 \
        run_class_finetuning.py \
        --model vit_base_patch16_224 \
        --data_set Kinetics-400 \
        --nb_classes 400 \
        --data_path ${DATA_PATH} \
        --finetune ${MODEL_PATH} \
        --log_dir ${OUTPUT_DIR} \
        --output_dir ${OUTPUT_DIR} \
        --batch_size 8 \
        --num_sample 1 \
        --input_size 224 \
        --short_side_size 224 \
        --save_ckpt_freq 10 \
        --num_frames 16 \
        --sampling_rate 4 \
        --opt adamw \
        --lr 1e-3 \
        --opt_betas 0.9 0.999 \
        --weight_decay 0.05 \
        --epochs 100 \
        --dist_eval \
        --test_num_segment 5 \
        --test_num_crop 3 \
        --enable_deepspeed
    

    on the first node. On other nodes, run the same command with --node_rank 1, ..., --node_rank 7 respectively. --master_addr is set as the ip of the node 0.

Note:

  • We perform the I3D dense sampling on Kinetics400 and uniform sampling on Something-Something V2, respectively.
  • We didn't use cls token in our implementation, and directly average the feature of last layer for video classification.
  • Here total batch size = (batch_size per gpu) x nodes x (gpus per node).
  • lr here is the base learning rate. The actual lr is computed by the linear scaling rule: actual lr = lr * total batch size / 256.

Slurm

To help the community to reproduce our results on slurm cluster, we also provide the the off-the-shelf script.

For example, to fine-tune SIGMA ViT-Base on Kinetics400 with 64 GPUs (8 nodes x 8 GPUs), you can run:

export MASTER_PORT=$((12000 + $RANDOM % 20000))
export OMP_NUM_THREADS=1

OUTPUT_DIR='YOUR_PATH/k400_SIGMA_pretrain_base_patch16_224_frame_16x4_tube_mask_ratio_0.9_e800/eval_lr_1e-3_epoch_100'
DATA_PATH='YOUR_PATH/list_kinetics-400'
MODEL_PATH='YOUR_PATH/k400_SIGMA_pretrain_base_patch16_224_frame_16x4_tube_mask_ratio_0.9_e800/checkpoint-799.pth'

JOB_NAME=$1
PARTITION=${PARTITION:-"video"}
# 8 for 1 node, 16 for 2 node, etc.
GPUS=${GPUS:-64}
GPUS_PER_NODE=${GPUS_PER_NODE:-8}
CPUS_PER_TASK=${CPUS_PER_TASK:-8}
SRUN_ARGS=${SRUN_ARGS:-""}
PY_ARGS=${@:2}

# batch_size can be adjusted according to the graphics card
srun -p $PARTITION \
        --job-name=${JOB_NAME} \
        --gres=gpu:${GPUS_PER_NODE} \
        --ntasks=${GPUS} \
        --ntasks-per-node=${GPUS_PER_NODE} \
        --cpus-per-task=${CPUS_PER_TASK} \
        --kill-on-bad-exit=1 \
        ${SRUN_ARGS} \
        python -u run_class_finetuning.py \
        --model vit_base_patch16_224 \
        --data_set Kinetics-400 \
        --nb_classes 400 \
        --data_path ${DATA_PATH} \
        --finetune ${MODEL_PATH} \
        --log_dir ${OUTPUT_DIR} \
        --output_dir ${OUTPUT_DIR} \
        --batch_size 8 \
        --num_sample 1 \
        --input_size 224 \
        --short_side_size 224 \
        --save_ckpt_freq 10 \
        --num_frames 16 \
        --sampling_rate 4 \
        --opt adamw \
        --lr 1e-3 \
        --opt_betas 0.9 0.999 \
        --weight_decay 0.05 \
        --epochs 100 \
        --dist_eval \
        --test_num_segment 5 \
        --test_num_crop 3 \
        --enable_deepspeed \
        ${PY_ARGS}