File size: 2,941 Bytes
d95606d e72ef39 d95606d e72ef39 d95606d e72ef39 d95606d e72ef39 d95606d e72ef39 d95606d e72ef39 d95606d e72ef39 d95606d e72ef39 d95606d e72ef39 d95606d e72ef39 d95606d e72ef39 d95606d e72ef39 d95606d e72ef39 d95606d e72ef39 d95606d e72ef39 d95606d e72ef39 d95606d e72ef39 d95606d e72ef39 d95606d e72ef39 d95606d e72ef39 d95606d e72ef39 d95606d e72ef39 d95606d e72ef39 d95606d e72ef39 d95606d e72ef39 d95606d e72ef39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
---
library_name: peft
license: cc-by-4.0
datasets:
- SPRINGLab/shiksha
- SPRINGLab/BPCC_cleaned
language:
- bn
- gu
- hi
- mr
- ml
- kn
- ta
- te
- en
metrics:
- bleu
base_model:
- facebook/nllb-200-3.3B
pipeline_tag: translation
---
# Shiksha MT Model Card
## Model Details
### 1. Model Description
- **Developed by:** [SPRING Lab](https://asr.iitm.ac.in)
- **Model type:** LoRA Adaptor
- **Language(s) (NLP):** Bengali, Gujarati, Hindi, Marathi, Malayalam, Kannada, Tamil, Telugu
- **License:** CC-BY-4.0
- **Finetuned from model:** [NLLB-200 3.3B](https://huggingface.co/facebook/nllb-200-3.3B)
### 2. Model Sources
- **Paper:** https://arxiv.org/abs/2412.09025
- **Demo:** https://asr.iitm.ac.in/demo/ttt
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
## How to Get Started with the Model
Use the code below to get started with the model.
```python
import torch
from peft import AutoPeftModelForSeq2SeqLM
from transformers import NllbTokenizerFast
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load model and tokenizer from local checkpoint
model = AutoPeftModelForSeq2SeqLM.from_pretrained("SPRINGLab/shiksha-MT-nllb-3.3B", device_map=device)
tokenizer = NllbTokenizerFast.from_pretrained("facebook/nllb-200-3.3B")
input_text = "Welcome back to the lecture series in Cell Culture."
# Lang codes: https://github.com/facebookresearch/flores/tree/main/flores200
tgt_lang = "hin_Deva"
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
output = model.generate(input_ids=inputs["input_ids"].to(device), max_new_tokens=256, forced_bos_token_id=tokenizer.convert_tokens_to_ids(tgt_lang))
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
print(output_text[0])
```
## Training Details
### 1. Training Data
We used the following datasets for training this adapter:
Shiksha: https://huggingface.co/datasets/SPRINGLab/shiksha
<br>
BPCC-cleaned: https://huggingface.co/datasets/SPRINGLab/BPCC_cleaned
#### 2. Training Hyperparameters
- peft-type: LORA
- rank: 256
- lora alpha: 256
- lora dropout: 0.1
- rslora: True
- target modules: all-linear
- learning rate: 4e-5
- optimizer: adafactor
- data-type: BF-16
- epochs: 1
### 3. Compute Infrastructure
We used 8 x A100 40GB GPUs for training this adapter. We would like to thank [CDAC](https://cdac.in) for providing the compute resources.
## Citation
If you use this model in your work, please cite us:
**BibTeX:**
```bibtex
@misc{joglekar2024shikshatechnicaldomainfocused,
title={Shiksha: A Technical Domain focused Translation Dataset and Model for Indian Languages},
author={Advait Joglekar and Srinivasan Umesh},
year={2024},
eprint={2412.09025},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2412.09025},
}
```
|