File size: 1,747 Bytes
8a17d7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from typing import Dict, List
import os

model_id = "mistralai/Mistral-7B-Instruct-v0.2"

# Initialize model and tokenizer with GPU settings
def load_model():
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        device_map="auto",
        torch_dtype=torch.bfloat16,
        trust_remote_code=True
    )
    model.eval()
    return model, tokenizer

# Load model and tokenizer globally
model, tokenizer = load_model()

def generate(prompt: str, 
            max_new_tokens: int = 500,
            temperature: float = 0.7,
            top_p: float = 0.95,
            top_k: int = 50) -> Dict:
    
    inputs = tokenizer(prompt, return_tensors="pt", padding=True)
    
    # Move inputs to GPU
    inputs = {k: v.to(model.device) for k, v in inputs.items()}

    outputs = model.generate(
        **inputs,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        pad_token_id=tokenizer.pad_token_id,
        eos_token_id=tokenizer.eos_token_id,
    )
    
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return {"generated_text": response}

def inference(inputs: Dict) -> Dict:
    prompt = inputs.get("inputs", "")
    params = inputs.get("parameters", {})
    
    max_new_tokens = params.get("max_new_tokens", 500)
    temperature = params.get("temperature", 0.7)
    top_p = params.get("top_p", 0.95)
    top_k = params.get("top_k", 50)
    
    return generate(
        prompt,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        top_p=top_p,
        top_k=top_k
    )