Whisper Small Sr Yodas

This model is a fine-tuned version of openai/whisper-small on the Yodas dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2688
  • Wer Ortho: 0.3334
  • Wer: 0.2450

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
1.0469 0.24 500 0.4020 0.5071 0.4270
0.9924 0.49 1000 0.3401 0.4082 0.3183
0.865 0.73 1500 0.3047 0.3644 0.2776
0.8443 0.98 2000 0.2893 0.3623 0.2735
0.7377 1.22 2500 0.2817 0.3472 0.2591
0.6851 1.46 3000 0.2728 0.3348 0.2466
0.7286 1.71 3500 0.2702 0.3325 0.2444
0.7215 1.95 4000 0.2688 0.3334 0.2450

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.0.1+cu117
  • Datasets 2.18.0
  • Tokenizers 0.15.1
Downloads last month
8
Safetensors
Model size
72.6M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Sagicc/whisper-base-sr-yodas

Finetuned
(2232)
this model
Quantizations
1 model

Dataset used to train Sagicc/whisper-base-sr-yodas

Evaluation results