Edit model card

Whisper Medium Sr Fleurs

This model is a fine-tuned version of openai/whisper-medium on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3577
  • Wer Ortho: 0.2072
  • Wer: 0.1794

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0341 2.49 500 0.2704 0.2074 0.1789
0.0109 4.98 1000 0.3091 0.2075 0.1774
0.006 7.46 1500 0.3143 0.2031 0.1713
0.0081 9.95 2000 0.3284 0.2070 0.1754
0.0038 12.44 2500 0.3426 0.2099 0.1805
0.0042 14.93 3000 0.3630 0.2113 0.1821
0.0032 17.41 3500 0.3659 0.2089 0.1791
0.0046 19.9 4000 0.3577 0.2072 0.1794

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Sagicc/whisper-medium-sr-fleurs

Finetuned
(455)
this model

Dataset used to train Sagicc/whisper-medium-sr-fleurs

Evaluation results