Edit model card

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Sailesh9999/bge-base-financial-matryoshka_2")
# Run inference
sentences = [
    'Chipotle retains an independent third-party compensation consultant each year to conduct a pay equity analysis of its U.S. and Canadian workforce, including factors of pay such as grade level, tenure in role, and external market conditions like geographic location, to ensure consistency and equitable treatment among employees.',
    'How does Chipotle ensure pay equity among its employees?',
    'How can one locate information on legal proceedings within the Consolidated Financial Statements?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.4871
cosine_accuracy@3 0.6429
cosine_accuracy@5 0.7029
cosine_accuracy@10 0.75
cosine_precision@1 0.4871
cosine_precision@3 0.2143
cosine_precision@5 0.1406
cosine_precision@10 0.075
cosine_recall@1 0.4871
cosine_recall@3 0.6429
cosine_recall@5 0.7029
cosine_recall@10 0.75
cosine_ndcg@10 0.6189
cosine_mrr@10 0.5768
cosine_map@10 0.5768

Information Retrieval

Metric Value
cosine_accuracy@1 0.4857
cosine_accuracy@3 0.6329
cosine_accuracy@5 0.6886
cosine_accuracy@10 0.7457
cosine_precision@1 0.4857
cosine_precision@3 0.211
cosine_precision@5 0.1377
cosine_precision@10 0.0746
cosine_recall@1 0.4857
cosine_recall@3 0.6329
cosine_recall@5 0.6886
cosine_recall@10 0.7457
cosine_ndcg@10 0.615
cosine_mrr@10 0.5731
cosine_map@10 0.5731

Information Retrieval

Metric Value
cosine_accuracy@1 0.46
cosine_accuracy@3 0.62
cosine_accuracy@5 0.69
cosine_accuracy@10 0.74
cosine_precision@1 0.46
cosine_precision@3 0.2067
cosine_precision@5 0.138
cosine_precision@10 0.074
cosine_recall@1 0.46
cosine_recall@3 0.62
cosine_recall@5 0.69
cosine_recall@10 0.74
cosine_ndcg@10 0.5987
cosine_mrr@10 0.5534
cosine_map@10 0.5534

Information Retrieval

Metric Value
cosine_accuracy@1 0.4486
cosine_accuracy@3 0.59
cosine_accuracy@5 0.6543
cosine_accuracy@10 0.7386
cosine_precision@1 0.4486
cosine_precision@3 0.1967
cosine_precision@5 0.1309
cosine_precision@10 0.0739
cosine_recall@1 0.4486
cosine_recall@3 0.59
cosine_recall@5 0.6543
cosine_recall@10 0.7386
cosine_ndcg@10 0.5852
cosine_mrr@10 0.537
cosine_map@10 0.537

Information Retrieval

Metric Value
cosine_accuracy@1 0.42
cosine_accuracy@3 0.58
cosine_accuracy@5 0.6357
cosine_accuracy@10 0.7014
cosine_precision@1 0.42
cosine_precision@3 0.1933
cosine_precision@5 0.1271
cosine_precision@10 0.0701
cosine_recall@1 0.42
cosine_recall@3 0.58
cosine_recall@5 0.6357
cosine_recall@10 0.7014
cosine_ndcg@10 0.5589
cosine_mrr@10 0.5135
cosine_map@10 0.5135

Training Details

Training Dataset

Unnamed Dataset

  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 7 tokens
    • mean: 46.55 tokens
    • max: 439 tokens
    • min: 9 tokens
    • mean: 20.43 tokens
    • max: 46 tokens
  • Samples:
    positive anchor
    Americas $
    Item 1 Business typically includes detailed information about the organization's operations, the nature of the business, and its strategic direction. What is the title of the section that potentially discusses the operations or nature of a business in a document?
    Operating expenses as a percentage of total revenues decreased to 15.3% in 2023 compared to 15.9% in 2022. What was the operating expenses as a percentage of total revenues in 2023?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 0.002
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 0.002
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@10 dim_256_cosine_map@10 dim_512_cosine_map@10 dim_64_cosine_map@10 dim_768_cosine_map@10
0.8122 10 1.7296 - - - - -
0.9746 12 - 0.4001 0.4162 0.4276 0.3764 0.4325
1.6244 20 5.4001 - - - - -
1.9492 24 - 0.2783 0.2849 0.2904 0.2511 0.2977
2.4365 30 6.4296 - - - - -
2.9239 36 - 0.5106 0.5267 0.5399 0.4879 0.5439
3.2487 40 1.2919 - - - - -
3.8985 48 - 0.537 0.5534 0.5731 0.5135 0.5768
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.9.18
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.29.3
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
7
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Sailesh9999/bge-base-financial-matryoshka_2

Finetuned
(256)
this model

Evaluation results