File size: 47,980 Bytes
f7400ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
2022-04-25 00:28:46,333 ----------------------------------------------------------------------------------------------------
2022-04-25 00:28:46,337 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): XLMRobertaModel(
      (embeddings): RobertaEmbeddings(
        (word_embeddings): Embedding(250002, 1024, padding_idx=1)
        (position_embeddings): Embedding(514, 1024, padding_idx=1)
        (token_type_embeddings): Embedding(1, 1024)
        (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): RobertaEncoder(
        (layer): ModuleList(
          (0): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (1): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (2): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (3): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (4): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (5): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (6): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (7): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (8): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (9): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (10): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (11): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (12): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (13): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (14): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (15): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (16): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (17): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (18): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (19): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (20): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (21): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (22): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (23): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): RobertaPooler(
        (dense): Linear(in_features=1024, out_features=1024, bias=True)
        (activation): Tanh()
      )
    )
  )
  (word_dropout): WordDropout(p=0.05)
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1024, out_features=20, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2022-04-25 00:28:46,337 ----------------------------------------------------------------------------------------------------
2022-04-25 00:28:46,338 Corpus: "Corpus: 352 train + 50 dev + 67 test sentences"
2022-04-25 00:28:46,338 ----------------------------------------------------------------------------------------------------
2022-04-25 00:28:46,339 Parameters:
2022-04-25 00:28:46,339  - learning_rate: "0.000005"
2022-04-25 00:28:46,340  - mini_batch_size: "4"
2022-04-25 00:28:46,340  - patience: "3"
2022-04-25 00:28:46,340  - anneal_factor: "0.5"
2022-04-25 00:28:46,341  - max_epochs: "10"
2022-04-25 00:28:46,341  - shuffle: "True"
2022-04-25 00:28:46,342  - train_with_dev: "False"
2022-04-25 00:28:46,342  - batch_growth_annealing: "False"
2022-04-25 00:28:46,343 ----------------------------------------------------------------------------------------------------
2022-04-25 00:28:46,343 Model training base path: "resources/taggers/ner_xlm_finedtuned_ck1"
2022-04-25 00:28:46,344 ----------------------------------------------------------------------------------------------------
2022-04-25 00:28:46,345 Device: cuda:0
2022-04-25 00:28:46,345 ----------------------------------------------------------------------------------------------------
2022-04-25 00:28:46,346 Embeddings storage mode: none
2022-04-25 00:28:46,346 ----------------------------------------------------------------------------------------------------
2022-04-25 00:28:55,605 epoch 1 - iter 8/88 - loss 1.25822871 - samples/sec: 3.46 - lr: 0.000000
2022-04-25 00:29:03,857 epoch 1 - iter 16/88 - loss 1.22365524 - samples/sec: 3.88 - lr: 0.000001
2022-04-25 00:29:13,839 epoch 1 - iter 24/88 - loss 1.18822646 - samples/sec: 3.21 - lr: 0.000001
2022-04-25 00:29:23,244 epoch 1 - iter 32/88 - loss 1.12798044 - samples/sec: 3.40 - lr: 0.000002
2022-04-25 00:29:31,472 epoch 1 - iter 40/88 - loss 1.05740151 - samples/sec: 3.89 - lr: 0.000002
2022-04-25 00:29:38,751 epoch 1 - iter 48/88 - loss 0.99049744 - samples/sec: 4.40 - lr: 0.000003
2022-04-25 00:29:46,982 epoch 1 - iter 56/88 - loss 0.92466364 - samples/sec: 3.89 - lr: 0.000003
2022-04-25 00:29:54,849 epoch 1 - iter 64/88 - loss 0.87012404 - samples/sec: 4.07 - lr: 0.000004
2022-04-25 00:30:04,123 epoch 1 - iter 72/88 - loss 0.80738819 - samples/sec: 3.45 - lr: 0.000004
2022-04-25 00:30:13,985 epoch 1 - iter 80/88 - loss 0.76049921 - samples/sec: 3.25 - lr: 0.000005
2022-04-25 00:30:23,710 epoch 1 - iter 88/88 - loss 0.72027292 - samples/sec: 3.29 - lr: 0.000005
2022-04-25 00:30:23,712 ----------------------------------------------------------------------------------------------------
2022-04-25 00:30:23,713 EPOCH 1 done: loss 0.7203 - lr 0.000005
2022-04-25 00:30:30,732 Evaluating as a multi-label problem: False
2022-04-25 00:30:30,742 DEV : loss 0.20562097430229187 - f1-score (micro avg)  0.0027
2022-04-25 00:30:30,751 BAD EPOCHS (no improvement): 4
2022-04-25 00:30:30,753 ----------------------------------------------------------------------------------------------------
2022-04-25 00:30:39,284 epoch 2 - iter 8/88 - loss 0.32586993 - samples/sec: 3.75 - lr: 0.000005
2022-04-25 00:30:47,933 epoch 2 - iter 16/88 - loss 0.33892041 - samples/sec: 3.70 - lr: 0.000005
2022-04-25 00:30:56,990 epoch 2 - iter 24/88 - loss 0.33672071 - samples/sec: 3.53 - lr: 0.000005
2022-04-25 00:31:05,736 epoch 2 - iter 32/88 - loss 0.33060665 - samples/sec: 3.66 - lr: 0.000005
2022-04-25 00:31:13,937 epoch 2 - iter 40/88 - loss 0.33045049 - samples/sec: 3.90 - lr: 0.000005
2022-04-25 00:31:23,091 epoch 2 - iter 48/88 - loss 0.32851558 - samples/sec: 3.50 - lr: 0.000005
2022-04-25 00:31:31,313 epoch 2 - iter 56/88 - loss 0.32679558 - samples/sec: 3.89 - lr: 0.000005
2022-04-25 00:31:41,184 epoch 2 - iter 64/88 - loss 0.32379177 - samples/sec: 3.24 - lr: 0.000005
2022-04-25 00:31:49,757 epoch 2 - iter 72/88 - loss 0.32124627 - samples/sec: 3.73 - lr: 0.000005
2022-04-25 00:31:57,768 epoch 2 - iter 80/88 - loss 0.32825760 - samples/sec: 4.00 - lr: 0.000004
2022-04-25 00:32:08,014 epoch 2 - iter 88/88 - loss 0.32124062 - samples/sec: 3.12 - lr: 0.000004
2022-04-25 00:32:08,017 ----------------------------------------------------------------------------------------------------
2022-04-25 00:32:08,018 EPOCH 2 done: loss 0.3212 - lr 0.000004
2022-04-25 00:32:15,400 Evaluating as a multi-label problem: False
2022-04-25 00:32:15,415 DEV : loss 0.15934991836547852 - f1-score (micro avg)  0.0082
2022-04-25 00:32:15,428 BAD EPOCHS (no improvement): 4
2022-04-25 00:32:15,431 ----------------------------------------------------------------------------------------------------
2022-04-25 00:32:25,133 epoch 3 - iter 8/88 - loss 0.26548392 - samples/sec: 3.30 - lr: 0.000004
2022-04-25 00:32:33,272 epoch 3 - iter 16/88 - loss 0.28651787 - samples/sec: 3.93 - lr: 0.000004
2022-04-25 00:32:41,433 epoch 3 - iter 24/88 - loss 0.29010948 - samples/sec: 3.92 - lr: 0.000004
2022-04-25 00:32:50,243 epoch 3 - iter 32/88 - loss 0.29681501 - samples/sec: 3.63 - lr: 0.000004
2022-04-25 00:32:59,007 epoch 3 - iter 40/88 - loss 0.29554105 - samples/sec: 3.65 - lr: 0.000004
2022-04-25 00:33:07,692 epoch 3 - iter 48/88 - loss 0.29343573 - samples/sec: 3.69 - lr: 0.000004
2022-04-25 00:33:16,189 epoch 3 - iter 56/88 - loss 0.29547981 - samples/sec: 3.77 - lr: 0.000004
2022-04-25 00:33:25,763 epoch 3 - iter 64/88 - loss 0.28997972 - samples/sec: 3.34 - lr: 0.000004
2022-04-25 00:33:36,471 epoch 3 - iter 72/88 - loss 0.29000464 - samples/sec: 2.99 - lr: 0.000004
2022-04-25 00:33:45,481 epoch 3 - iter 80/88 - loss 0.29344732 - samples/sec: 3.55 - lr: 0.000004
2022-04-25 00:33:53,793 epoch 3 - iter 88/88 - loss 0.29232563 - samples/sec: 3.85 - lr: 0.000004
2022-04-25 00:33:53,797 ----------------------------------------------------------------------------------------------------
2022-04-25 00:33:53,798 EPOCH 3 done: loss 0.2923 - lr 0.000004
2022-04-25 00:34:00,978 Evaluating as a multi-label problem: False
2022-04-25 00:34:00,991 DEV : loss 0.14386053383350372 - f1-score (micro avg)  0.0664
2022-04-25 00:34:00,999 BAD EPOCHS (no improvement): 4
2022-04-25 00:34:01,000 ----------------------------------------------------------------------------------------------------
2022-04-25 00:34:09,617 epoch 4 - iter 8/88 - loss 0.32142401 - samples/sec: 3.72 - lr: 0.000004
2022-04-25 00:34:17,886 epoch 4 - iter 16/88 - loss 0.30301646 - samples/sec: 3.87 - lr: 0.000004
2022-04-25 00:34:27,850 epoch 4 - iter 24/88 - loss 0.28913590 - samples/sec: 3.21 - lr: 0.000004
2022-04-25 00:34:35,703 epoch 4 - iter 32/88 - loss 0.29200045 - samples/sec: 4.08 - lr: 0.000004
2022-04-25 00:34:44,383 epoch 4 - iter 40/88 - loss 0.28601870 - samples/sec: 3.69 - lr: 0.000004
2022-04-25 00:34:53,597 epoch 4 - iter 48/88 - loss 0.28333016 - samples/sec: 3.47 - lr: 0.000004
2022-04-25 00:35:02,237 epoch 4 - iter 56/88 - loss 0.28101070 - samples/sec: 3.70 - lr: 0.000004
2022-04-25 00:35:11,887 epoch 4 - iter 64/88 - loss 0.27725419 - samples/sec: 3.32 - lr: 0.000003
2022-04-25 00:35:20,971 epoch 4 - iter 72/88 - loss 0.27522330 - samples/sec: 3.52 - lr: 0.000003
2022-04-25 00:35:29,993 epoch 4 - iter 80/88 - loss 0.27767522 - samples/sec: 3.55 - lr: 0.000003
2022-04-25 00:35:38,121 epoch 4 - iter 88/88 - loss 0.27780342 - samples/sec: 3.94 - lr: 0.000003
2022-04-25 00:35:38,125 ----------------------------------------------------------------------------------------------------
2022-04-25 00:35:38,126 EPOCH 4 done: loss 0.2778 - lr 0.000003
2022-04-25 00:35:45,523 Evaluating as a multi-label problem: False
2022-04-25 00:35:45,536 DEV : loss 0.13249367475509644 - f1-score (micro avg)  0.1099
2022-04-25 00:35:45,545 BAD EPOCHS (no improvement): 4
2022-04-25 00:35:45,547 ----------------------------------------------------------------------------------------------------
2022-04-25 00:35:55,215 epoch 5 - iter 8/88 - loss 0.26147172 - samples/sec: 3.31 - lr: 0.000003
2022-04-25 00:36:05,160 epoch 5 - iter 16/88 - loss 0.26559845 - samples/sec: 3.22 - lr: 0.000003
2022-04-25 00:36:13,857 epoch 5 - iter 24/88 - loss 0.26674131 - samples/sec: 3.68 - lr: 0.000003
2022-04-25 00:36:22,022 epoch 5 - iter 32/88 - loss 0.26445641 - samples/sec: 3.92 - lr: 0.000003
2022-04-25 00:36:29,834 epoch 5 - iter 40/88 - loss 0.26849622 - samples/sec: 4.10 - lr: 0.000003
2022-04-25 00:36:38,499 epoch 5 - iter 48/88 - loss 0.26495720 - samples/sec: 3.69 - lr: 0.000003
2022-04-25 00:36:46,651 epoch 5 - iter 56/88 - loss 0.26747065 - samples/sec: 3.93 - lr: 0.000003
2022-04-25 00:36:56,479 epoch 5 - iter 64/88 - loss 0.26716735 - samples/sec: 3.26 - lr: 0.000003
2022-04-25 00:37:05,247 epoch 5 - iter 72/88 - loss 0.26323866 - samples/sec: 3.65 - lr: 0.000003
2022-04-25 00:37:14,099 epoch 5 - iter 80/88 - loss 0.26763434 - samples/sec: 3.62 - lr: 0.000003
2022-04-25 00:37:23,612 epoch 5 - iter 88/88 - loss 0.26510194 - samples/sec: 3.36 - lr: 0.000003
2022-04-25 00:37:23,615 ----------------------------------------------------------------------------------------------------
2022-04-25 00:37:23,615 EPOCH 5 done: loss 0.2651 - lr 0.000003
2022-04-25 00:37:30,711 Evaluating as a multi-label problem: False
2022-04-25 00:37:30,723 DEV : loss 0.1335981786251068 - f1-score (micro avg)  0.1516
2022-04-25 00:37:30,734 BAD EPOCHS (no improvement): 4
2022-04-25 00:37:30,735 ----------------------------------------------------------------------------------------------------
2022-04-25 00:37:39,100 epoch 6 - iter 8/88 - loss 0.25254979 - samples/sec: 3.83 - lr: 0.000003
2022-04-25 00:37:48,489 epoch 6 - iter 16/88 - loss 0.24629379 - samples/sec: 3.41 - lr: 0.000003
2022-04-25 00:37:56,856 epoch 6 - iter 24/88 - loss 0.25016090 - samples/sec: 3.83 - lr: 0.000003
2022-04-25 00:38:06,647 epoch 6 - iter 32/88 - loss 0.25646469 - samples/sec: 3.27 - lr: 0.000003
2022-04-25 00:38:14,700 epoch 6 - iter 40/88 - loss 0.25909943 - samples/sec: 3.97 - lr: 0.000003
2022-04-25 00:38:23,772 epoch 6 - iter 48/88 - loss 0.25850607 - samples/sec: 3.53 - lr: 0.000002
2022-04-25 00:38:32,983 epoch 6 - iter 56/88 - loss 0.25417190 - samples/sec: 3.48 - lr: 0.000002
2022-04-25 00:38:42,014 epoch 6 - iter 64/88 - loss 0.25534730 - samples/sec: 3.54 - lr: 0.000002
2022-04-25 00:38:49,968 epoch 6 - iter 72/88 - loss 0.25617877 - samples/sec: 4.02 - lr: 0.000002
2022-04-25 00:38:58,183 epoch 6 - iter 80/88 - loss 0.25537613 - samples/sec: 3.90 - lr: 0.000002
2022-04-25 00:39:07,930 epoch 6 - iter 88/88 - loss 0.25729809 - samples/sec: 3.28 - lr: 0.000002
2022-04-25 00:39:07,933 ----------------------------------------------------------------------------------------------------
2022-04-25 00:39:07,934 EPOCH 6 done: loss 0.2573 - lr 0.000002
2022-04-25 00:39:15,220 Evaluating as a multi-label problem: False
2022-04-25 00:39:15,238 DEV : loss 0.12874221801757812 - f1-score (micro avg)  0.215
2022-04-25 00:39:15,250 BAD EPOCHS (no improvement): 4
2022-04-25 00:39:15,252 ----------------------------------------------------------------------------------------------------
2022-04-25 00:39:23,920 epoch 7 - iter 8/88 - loss 0.25032306 - samples/sec: 3.69 - lr: 0.000002
2022-04-25 00:39:32,341 epoch 7 - iter 16/88 - loss 0.24173648 - samples/sec: 3.80 - lr: 0.000002
2022-04-25 00:39:42,283 epoch 7 - iter 24/88 - loss 0.25674155 - samples/sec: 3.22 - lr: 0.000002
2022-04-25 00:39:50,287 epoch 7 - iter 32/88 - loss 0.25221355 - samples/sec: 4.00 - lr: 0.000002
2022-04-25 00:39:58,742 epoch 7 - iter 40/88 - loss 0.25534056 - samples/sec: 3.79 - lr: 0.000002
2022-04-25 00:40:07,531 epoch 7 - iter 48/88 - loss 0.25396630 - samples/sec: 3.64 - lr: 0.000002
2022-04-25 00:40:16,857 epoch 7 - iter 56/88 - loss 0.25506091 - samples/sec: 3.43 - lr: 0.000002
2022-04-25 00:40:26,056 epoch 7 - iter 64/88 - loss 0.25606985 - samples/sec: 3.48 - lr: 0.000002
2022-04-25 00:40:34,742 epoch 7 - iter 72/88 - loss 0.25690660 - samples/sec: 3.68 - lr: 0.000002
2022-04-25 00:40:43,201 epoch 7 - iter 80/88 - loss 0.25644415 - samples/sec: 3.78 - lr: 0.000002
2022-04-25 00:40:53,512 epoch 7 - iter 88/88 - loss 0.25640539 - samples/sec: 3.10 - lr: 0.000002
2022-04-25 00:40:53,515 ----------------------------------------------------------------------------------------------------
2022-04-25 00:40:53,516 EPOCH 7 done: loss 0.2564 - lr 0.000002
2022-04-25 00:40:59,919 Evaluating as a multi-label problem: False
2022-04-25 00:40:59,934 DEV : loss 0.12849482893943787 - f1-score (micro avg)  0.2546
2022-04-25 00:40:59,943 BAD EPOCHS (no improvement): 4
2022-04-25 00:40:59,944 ----------------------------------------------------------------------------------------------------
2022-04-25 00:41:09,917 epoch 8 - iter 8/88 - loss 0.26072190 - samples/sec: 3.21 - lr: 0.000002
2022-04-25 00:41:18,102 epoch 8 - iter 16/88 - loss 0.27005318 - samples/sec: 3.91 - lr: 0.000002
2022-04-25 00:41:26,730 epoch 8 - iter 24/88 - loss 0.26735720 - samples/sec: 3.71 - lr: 0.000002
2022-04-25 00:41:35,802 epoch 8 - iter 32/88 - loss 0.25981810 - samples/sec: 3.53 - lr: 0.000001
2022-04-25 00:41:45,065 epoch 8 - iter 40/88 - loss 0.25497924 - samples/sec: 3.46 - lr: 0.000001
2022-04-25 00:41:53,266 epoch 8 - iter 48/88 - loss 0.25297761 - samples/sec: 3.90 - lr: 0.000001
2022-04-25 00:42:01,654 epoch 8 - iter 56/88 - loss 0.25588829 - samples/sec: 3.82 - lr: 0.000001
2022-04-25 00:42:10,833 epoch 8 - iter 64/88 - loss 0.25234574 - samples/sec: 3.49 - lr: 0.000001
2022-04-25 00:42:20,767 epoch 8 - iter 72/88 - loss 0.25437752 - samples/sec: 3.22 - lr: 0.000001
2022-04-25 00:42:29,555 epoch 8 - iter 80/88 - loss 0.25358380 - samples/sec: 3.64 - lr: 0.000001
2022-04-25 00:42:38,444 epoch 8 - iter 88/88 - loss 0.25159043 - samples/sec: 3.60 - lr: 0.000001
2022-04-25 00:42:38,447 ----------------------------------------------------------------------------------------------------
2022-04-25 00:42:38,447 EPOCH 8 done: loss 0.2516 - lr 0.000001
2022-04-25 00:42:45,466 Evaluating as a multi-label problem: False
2022-04-25 00:42:45,478 DEV : loss 0.13098381459712982 - f1-score (micro avg)  0.2535
2022-04-25 00:42:45,486 BAD EPOCHS (no improvement): 4
2022-04-25 00:42:45,488 ----------------------------------------------------------------------------------------------------
2022-04-25 00:42:55,033 epoch 9 - iter 8/88 - loss 0.22931718 - samples/sec: 3.35 - lr: 0.000001
2022-04-25 00:43:03,513 epoch 9 - iter 16/88 - loss 0.25355650 - samples/sec: 3.77 - lr: 0.000001
2022-04-25 00:43:13,870 epoch 9 - iter 24/88 - loss 0.25289254 - samples/sec: 3.09 - lr: 0.000001
2022-04-25 00:43:22,935 epoch 9 - iter 32/88 - loss 0.24994442 - samples/sec: 3.53 - lr: 0.000001
2022-04-25 00:43:30,905 epoch 9 - iter 40/88 - loss 0.24795011 - samples/sec: 4.02 - lr: 0.000001
2022-04-25 00:43:39,312 epoch 9 - iter 48/88 - loss 0.24733180 - samples/sec: 3.81 - lr: 0.000001
2022-04-25 00:43:47,522 epoch 9 - iter 56/88 - loss 0.24885510 - samples/sec: 3.90 - lr: 0.000001
2022-04-25 00:43:55,856 epoch 9 - iter 64/88 - loss 0.25085127 - samples/sec: 3.84 - lr: 0.000001
2022-04-25 00:44:04,511 epoch 9 - iter 72/88 - loss 0.25141658 - samples/sec: 3.70 - lr: 0.000001
2022-04-25 00:44:13,473 epoch 9 - iter 80/88 - loss 0.25114253 - samples/sec: 3.57 - lr: 0.000001
2022-04-25 00:44:23,065 epoch 9 - iter 88/88 - loss 0.25032100 - samples/sec: 3.34 - lr: 0.000001
2022-04-25 00:44:23,068 ----------------------------------------------------------------------------------------------------
2022-04-25 00:44:23,069 EPOCH 9 done: loss 0.2503 - lr 0.000001
2022-04-25 00:44:30,828 Evaluating as a multi-label problem: False
2022-04-25 00:44:30,844 DEV : loss 0.1269032210111618 - f1-score (micro avg)  0.2445
2022-04-25 00:44:30,854 BAD EPOCHS (no improvement): 4
2022-04-25 00:44:30,855 ----------------------------------------------------------------------------------------------------
2022-04-25 00:44:38,190 epoch 10 - iter 8/88 - loss 0.25877504 - samples/sec: 4.36 - lr: 0.000001
2022-04-25 00:44:47,141 epoch 10 - iter 16/88 - loss 0.26538309 - samples/sec: 3.58 - lr: 0.000000
2022-04-25 00:44:56,357 epoch 10 - iter 24/88 - loss 0.25992814 - samples/sec: 3.47 - lr: 0.000000
2022-04-25 00:45:04,805 epoch 10 - iter 32/88 - loss 0.25024608 - samples/sec: 3.79 - lr: 0.000000
2022-04-25 00:45:12,966 epoch 10 - iter 40/88 - loss 0.25450198 - samples/sec: 3.92 - lr: 0.000000
2022-04-25 00:45:23,081 epoch 10 - iter 48/88 - loss 0.25508489 - samples/sec: 3.16 - lr: 0.000000
2022-04-25 00:45:32,191 epoch 10 - iter 56/88 - loss 0.25273411 - samples/sec: 3.51 - lr: 0.000000
2022-04-25 00:45:40,798 epoch 10 - iter 64/88 - loss 0.25090079 - samples/sec: 3.72 - lr: 0.000000
2022-04-25 00:45:49,572 epoch 10 - iter 72/88 - loss 0.24954558 - samples/sec: 3.65 - lr: 0.000000
2022-04-25 00:45:59,254 epoch 10 - iter 80/88 - loss 0.24933938 - samples/sec: 3.31 - lr: 0.000000
2022-04-25 00:46:08,852 epoch 10 - iter 88/88 - loss 0.24774755 - samples/sec: 3.33 - lr: 0.000000
2022-04-25 00:46:08,856 ----------------------------------------------------------------------------------------------------
2022-04-25 00:46:08,857 EPOCH 10 done: loss 0.2477 - lr 0.000000
2022-04-25 00:46:15,919 Evaluating as a multi-label problem: False
2022-04-25 00:46:15,935 DEV : loss 0.12706945836544037 - f1-score (micro avg)  0.2495
2022-04-25 00:46:15,947 BAD EPOCHS (no improvement): 4
2022-04-25 00:46:19,590 ----------------------------------------------------------------------------------------------------
2022-04-25 00:46:19,592 Testing using last state of model ...
2022-04-25 00:46:29,219 Evaluating as a multi-label problem: False
2022-04-25 00:46:29,232 0.4412	0.2257	0.2986	0.1758
2022-04-25 00:46:29,232 
Results:
- F-score (micro) 0.2986
- F-score (macro) 0.147
- Accuracy 0.1758

By class:
              precision    recall  f1-score   support

         ORG     0.4718    0.2314    0.3105       687
         LOC     0.3837    0.2171    0.2773       304
        PENT     0.0000    0.0000    0.0000         6
        MISC     0.0000    0.0000    0.0000         0

   micro avg     0.4412    0.2257    0.2986       997
   macro avg     0.2139    0.1121    0.1470       997
weighted avg     0.4421    0.2257    0.2985       997

2022-04-25 00:46:29,233 ----------------------------------------------------------------------------------------------------