File size: 47,139 Bytes
8f0563d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
2022-04-25 01:39:43,366 ----------------------------------------------------------------------------------------------------
2022-04-25 01:39:43,370 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): XLMRobertaModel(
      (embeddings): RobertaEmbeddings(
        (word_embeddings): Embedding(250002, 1024, padding_idx=1)
        (position_embeddings): Embedding(514, 1024, padding_idx=1)
        (token_type_embeddings): Embedding(1, 1024)
        (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): RobertaEncoder(
        (layer): ModuleList(
          (0): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (1): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (2): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (3): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (4): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (5): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (6): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (7): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (8): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (9): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (10): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (11): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (12): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (13): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (14): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (15): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (16): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (17): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (18): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (19): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (20): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (21): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (22): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (23): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): RobertaPooler(
        (dense): Linear(in_features=1024, out_features=1024, bias=True)
        (activation): Tanh()
      )
    )
  )
  (word_dropout): WordDropout(p=0.05)
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1024, out_features=20, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2022-04-25 01:39:43,372 ----------------------------------------------------------------------------------------------------
2022-04-25 01:39:43,372 Corpus: "Corpus: 1820 train + 50 dev + 67 test sentences"
2022-04-25 01:39:43,373 ----------------------------------------------------------------------------------------------------
2022-04-25 01:39:43,374 Parameters:
2022-04-25 01:39:43,374  - learning_rate: "0.000005"
2022-04-25 01:39:43,375  - mini_batch_size: "4"
2022-04-25 01:39:43,375  - patience: "3"
2022-04-25 01:39:43,376  - anneal_factor: "0.5"
2022-04-25 01:39:43,377  - max_epochs: "10"
2022-04-25 01:39:43,378  - shuffle: "True"
2022-04-25 01:39:43,378  - train_with_dev: "False"
2022-04-25 01:39:43,379  - batch_growth_annealing: "False"
2022-04-25 01:39:43,379 ----------------------------------------------------------------------------------------------------
2022-04-25 01:39:43,380 Model training base path: "resources/taggers/ner_xlm_finedtuned_ck1_ft"
2022-04-25 01:39:43,381 ----------------------------------------------------------------------------------------------------
2022-04-25 01:39:43,381 Device: cuda:0
2022-04-25 01:39:43,382 ----------------------------------------------------------------------------------------------------
2022-04-25 01:39:43,382 Embeddings storage mode: none
2022-04-25 01:39:43,383 ----------------------------------------------------------------------------------------------------
2022-04-25 01:40:01,316 epoch 1 - iter 45/455 - loss 2.02383973 - samples/sec: 10.04 - lr: 0.000000
2022-04-25 01:40:19,778 epoch 1 - iter 90/455 - loss 1.77018784 - samples/sec: 9.75 - lr: 0.000001
2022-04-25 01:40:38,303 epoch 1 - iter 135/455 - loss 1.55487540 - samples/sec: 9.72 - lr: 0.000001
2022-04-25 01:40:57,281 epoch 1 - iter 180/455 - loss 1.34519623 - samples/sec: 9.49 - lr: 0.000002
2022-04-25 01:41:18,145 epoch 1 - iter 225/455 - loss 1.15539089 - samples/sec: 8.63 - lr: 0.000002
2022-04-25 01:41:36,602 epoch 1 - iter 270/455 - loss 1.02895662 - samples/sec: 9.76 - lr: 0.000003
2022-04-25 01:41:55,400 epoch 1 - iter 315/455 - loss 0.93416075 - samples/sec: 9.58 - lr: 0.000003
2022-04-25 01:42:14,308 epoch 1 - iter 360/455 - loss 0.86211554 - samples/sec: 9.52 - lr: 0.000004
2022-04-25 01:42:33,218 epoch 1 - iter 405/455 - loss 0.80736508 - samples/sec: 9.52 - lr: 0.000004
2022-04-25 01:42:52,404 epoch 1 - iter 450/455 - loss 0.76251684 - samples/sec: 9.38 - lr: 0.000005
2022-04-25 01:42:54,450 ----------------------------------------------------------------------------------------------------
2022-04-25 01:42:54,452 EPOCH 1 done: loss 0.7578 - lr 0.000005
2022-04-25 01:43:03,256 Evaluating as a multi-label problem: False
2022-04-25 01:43:03,269 DEV : loss 0.3607260286808014 - f1-score (micro avg)  0.0
2022-04-25 01:43:03,277 BAD EPOCHS (no improvement): 4
2022-04-25 01:43:03,278 ----------------------------------------------------------------------------------------------------
2022-04-25 01:43:22,465 epoch 2 - iter 45/455 - loss 0.35669344 - samples/sec: 9.38 - lr: 0.000005
2022-04-25 01:43:41,226 epoch 2 - iter 90/455 - loss 0.33744187 - samples/sec: 9.60 - lr: 0.000005
2022-04-25 01:44:00,335 epoch 2 - iter 135/455 - loss 0.33264492 - samples/sec: 9.42 - lr: 0.000005
2022-04-25 01:44:19,259 epoch 2 - iter 180/455 - loss 0.33442139 - samples/sec: 9.51 - lr: 0.000005
2022-04-25 01:44:37,971 epoch 2 - iter 225/455 - loss 0.33062050 - samples/sec: 9.62 - lr: 0.000005
2022-04-25 01:44:56,896 epoch 2 - iter 270/455 - loss 0.32856691 - samples/sec: 9.51 - lr: 0.000005
2022-04-25 01:45:17,782 epoch 2 - iter 315/455 - loss 0.32794608 - samples/sec: 8.62 - lr: 0.000005
2022-04-25 01:45:36,760 epoch 2 - iter 360/455 - loss 0.32718419 - samples/sec: 9.49 - lr: 0.000005
2022-04-25 01:45:55,772 epoch 2 - iter 405/455 - loss 0.32696006 - samples/sec: 9.47 - lr: 0.000005
2022-04-25 01:46:15,075 epoch 2 - iter 450/455 - loss 0.32726336 - samples/sec: 9.33 - lr: 0.000004
2022-04-25 01:46:17,246 ----------------------------------------------------------------------------------------------------
2022-04-25 01:46:17,247 EPOCH 2 done: loss 0.3274 - lr 0.000004
2022-04-25 01:46:23,646 Evaluating as a multi-label problem: False
2022-04-25 01:46:23,664 DEV : loss 0.44372475147247314 - f1-score (micro avg)  0.0
2022-04-25 01:46:23,675 BAD EPOCHS (no improvement): 4
2022-04-25 01:46:23,676 ----------------------------------------------------------------------------------------------------
2022-04-25 01:46:42,384 epoch 3 - iter 45/455 - loss 0.31045361 - samples/sec: 9.63 - lr: 0.000004
2022-04-25 01:47:03,681 epoch 3 - iter 90/455 - loss 0.30688918 - samples/sec: 8.45 - lr: 0.000004
2022-04-25 01:47:22,548 epoch 3 - iter 135/455 - loss 0.30176367 - samples/sec: 9.54 - lr: 0.000004
2022-04-25 01:47:41,337 epoch 3 - iter 180/455 - loss 0.29894450 - samples/sec: 9.58 - lr: 0.000004
2022-04-25 01:48:00,045 epoch 3 - iter 225/455 - loss 0.29867330 - samples/sec: 9.62 - lr: 0.000004
2022-04-25 01:48:18,928 epoch 3 - iter 270/455 - loss 0.29997778 - samples/sec: 9.54 - lr: 0.000004
2022-04-25 01:48:37,737 epoch 3 - iter 315/455 - loss 0.30151499 - samples/sec: 9.57 - lr: 0.000004
2022-04-25 01:48:56,808 epoch 3 - iter 360/455 - loss 0.30030851 - samples/sec: 9.44 - lr: 0.000004
2022-04-25 01:49:15,866 epoch 3 - iter 405/455 - loss 0.29995926 - samples/sec: 9.45 - lr: 0.000004
2022-04-25 01:49:37,329 epoch 3 - iter 450/455 - loss 0.30000599 - samples/sec: 8.39 - lr: 0.000004
2022-04-25 01:49:39,502 ----------------------------------------------------------------------------------------------------
2022-04-25 01:49:39,503 EPOCH 3 done: loss 0.3004 - lr 0.000004
2022-04-25 01:49:46,186 Evaluating as a multi-label problem: False
2022-04-25 01:49:46,198 DEV : loss 0.4250624477863312 - f1-score (micro avg)  0.0
2022-04-25 01:49:46,207 BAD EPOCHS (no improvement): 4
2022-04-25 01:49:46,208 ----------------------------------------------------------------------------------------------------
2022-04-25 01:50:04,886 epoch 4 - iter 45/455 - loss 0.27018579 - samples/sec: 9.64 - lr: 0.000004
2022-04-25 01:50:23,747 epoch 4 - iter 90/455 - loss 0.28505798 - samples/sec: 9.55 - lr: 0.000004
2022-04-25 01:50:42,591 epoch 4 - iter 135/455 - loss 0.28106699 - samples/sec: 9.55 - lr: 0.000004
2022-04-25 01:51:01,834 epoch 4 - iter 180/455 - loss 0.28213592 - samples/sec: 9.36 - lr: 0.000004
2022-04-25 01:51:22,523 epoch 4 - iter 225/455 - loss 0.28339344 - samples/sec: 8.70 - lr: 0.000004
2022-04-25 01:51:41,984 epoch 4 - iter 270/455 - loss 0.28600075 - samples/sec: 9.25 - lr: 0.000004
2022-04-25 01:52:01,001 epoch 4 - iter 315/455 - loss 0.28507349 - samples/sec: 9.47 - lr: 0.000004
2022-04-25 01:52:19,572 epoch 4 - iter 360/455 - loss 0.28385244 - samples/sec: 9.70 - lr: 0.000003
2022-04-25 01:52:38,471 epoch 4 - iter 405/455 - loss 0.28397099 - samples/sec: 9.53 - lr: 0.000003
2022-04-25 01:52:57,371 epoch 4 - iter 450/455 - loss 0.28432390 - samples/sec: 9.53 - lr: 0.000003
2022-04-25 01:52:59,489 ----------------------------------------------------------------------------------------------------
2022-04-25 01:52:59,490 EPOCH 4 done: loss 0.2844 - lr 0.000003
2022-04-25 01:53:06,144 Evaluating as a multi-label problem: False
2022-04-25 01:53:06,157 DEV : loss 0.4436105787754059 - f1-score (micro avg)  0.0
2022-04-25 01:53:06,166 BAD EPOCHS (no improvement): 4
2022-04-25 01:53:06,168 ----------------------------------------------------------------------------------------------------
2022-04-25 01:53:27,165 epoch 5 - iter 45/455 - loss 0.26753679 - samples/sec: 8.58 - lr: 0.000003
2022-04-25 01:53:46,071 epoch 5 - iter 90/455 - loss 0.27230605 - samples/sec: 9.52 - lr: 0.000003
2022-04-25 01:54:04,859 epoch 5 - iter 135/455 - loss 0.27246786 - samples/sec: 9.58 - lr: 0.000003
2022-04-25 01:54:23,704 epoch 5 - iter 180/455 - loss 0.27259198 - samples/sec: 9.55 - lr: 0.000003
2022-04-25 01:54:42,577 epoch 5 - iter 225/455 - loss 0.27431760 - samples/sec: 9.54 - lr: 0.000003
2022-04-25 01:55:01,271 epoch 5 - iter 270/455 - loss 0.27392484 - samples/sec: 9.63 - lr: 0.000003
2022-04-25 01:55:20,066 epoch 5 - iter 315/455 - loss 0.27357625 - samples/sec: 9.58 - lr: 0.000003
2022-04-25 01:55:39,125 epoch 5 - iter 360/455 - loss 0.27202662 - samples/sec: 9.45 - lr: 0.000003
2022-04-25 01:55:57,915 epoch 5 - iter 405/455 - loss 0.27381644 - samples/sec: 9.58 - lr: 0.000003
2022-04-25 01:56:19,310 epoch 5 - iter 450/455 - loss 0.27384803 - samples/sec: 8.42 - lr: 0.000003
2022-04-25 01:56:21,405 ----------------------------------------------------------------------------------------------------
2022-04-25 01:56:21,405 EPOCH 5 done: loss 0.2735 - lr 0.000003
2022-04-25 01:56:27,996 Evaluating as a multi-label problem: False
2022-04-25 01:56:28,008 DEV : loss 0.46451953053474426 - f1-score (micro avg)  0.0
2022-04-25 01:56:28,017 BAD EPOCHS (no improvement): 4
2022-04-25 01:56:28,018 ----------------------------------------------------------------------------------------------------
2022-04-25 01:56:46,994 epoch 6 - iter 45/455 - loss 0.26238774 - samples/sec: 9.49 - lr: 0.000003
2022-04-25 01:57:06,067 epoch 6 - iter 90/455 - loss 0.26228525 - samples/sec: 9.44 - lr: 0.000003
2022-04-25 01:57:25,103 epoch 6 - iter 135/455 - loss 0.26298919 - samples/sec: 9.46 - lr: 0.000003
2022-04-25 01:57:45,904 epoch 6 - iter 180/455 - loss 0.26033810 - samples/sec: 8.66 - lr: 0.000003
2022-04-25 01:58:04,752 epoch 6 - iter 225/455 - loss 0.25980613 - samples/sec: 9.55 - lr: 0.000003
2022-04-25 01:58:23,635 epoch 6 - iter 270/455 - loss 0.25741937 - samples/sec: 9.53 - lr: 0.000002
2022-04-25 01:58:42,770 epoch 6 - iter 315/455 - loss 0.25761401 - samples/sec: 9.41 - lr: 0.000002
2022-04-25 01:59:01,669 epoch 6 - iter 360/455 - loss 0.25802951 - samples/sec: 9.53 - lr: 0.000002
2022-04-25 01:59:20,507 epoch 6 - iter 405/455 - loss 0.25786031 - samples/sec: 9.56 - lr: 0.000002
2022-04-25 01:59:39,104 epoch 6 - iter 450/455 - loss 0.25875289 - samples/sec: 9.68 - lr: 0.000002
2022-04-25 01:59:41,245 ----------------------------------------------------------------------------------------------------
2022-04-25 01:59:41,247 EPOCH 6 done: loss 0.2586 - lr 0.000002
2022-04-25 01:59:50,159 Evaluating as a multi-label problem: False
2022-04-25 01:59:50,176 DEV : loss 0.5034258961677551 - f1-score (micro avg)  0.0
2022-04-25 01:59:50,186 BAD EPOCHS (no improvement): 4
2022-04-25 01:59:50,188 ----------------------------------------------------------------------------------------------------
2022-04-25 02:00:09,428 epoch 7 - iter 45/455 - loss 0.25272579 - samples/sec: 9.36 - lr: 0.000002
2022-04-25 02:00:28,674 epoch 7 - iter 90/455 - loss 0.24877335 - samples/sec: 9.35 - lr: 0.000002
2022-04-25 02:00:47,419 epoch 7 - iter 135/455 - loss 0.25029754 - samples/sec: 9.61 - lr: 0.000002
2022-04-25 02:01:06,330 epoch 7 - iter 180/455 - loss 0.24783496 - samples/sec: 9.52 - lr: 0.000002
2022-04-25 02:01:25,050 epoch 7 - iter 225/455 - loss 0.24702442 - samples/sec: 9.62 - lr: 0.000002
2022-04-25 02:01:43,981 epoch 7 - iter 270/455 - loss 0.24574698 - samples/sec: 9.51 - lr: 0.000002
2022-04-25 02:02:02,729 epoch 7 - iter 315/455 - loss 0.24814380 - samples/sec: 9.60 - lr: 0.000002
2022-04-25 02:02:24,035 epoch 7 - iter 360/455 - loss 0.24891601 - samples/sec: 8.45 - lr: 0.000002
2022-04-25 02:02:43,529 epoch 7 - iter 405/455 - loss 0.24938588 - samples/sec: 9.24 - lr: 0.000002
2022-04-25 02:03:02,611 epoch 7 - iter 450/455 - loss 0.24975402 - samples/sec: 9.44 - lr: 0.000002
2022-04-25 02:03:04,674 ----------------------------------------------------------------------------------------------------
2022-04-25 02:03:04,675 EPOCH 7 done: loss 0.2496 - lr 0.000002
2022-04-25 02:03:11,014 Evaluating as a multi-label problem: False
2022-04-25 02:03:11,028 DEV : loss 0.5326654314994812 - f1-score (micro avg)  0.0
2022-04-25 02:03:11,037 BAD EPOCHS (no improvement): 4
2022-04-25 02:03:11,039 ----------------------------------------------------------------------------------------------------
2022-04-25 02:03:29,928 epoch 8 - iter 45/455 - loss 0.23902515 - samples/sec: 9.53 - lr: 0.000002
2022-04-25 02:03:48,547 epoch 8 - iter 90/455 - loss 0.24182299 - samples/sec: 9.67 - lr: 0.000002
2022-04-25 02:04:09,761 epoch 8 - iter 135/455 - loss 0.23794694 - samples/sec: 8.49 - lr: 0.000002
2022-04-25 02:04:28,820 epoch 8 - iter 180/455 - loss 0.23901632 - samples/sec: 9.45 - lr: 0.000001
2022-04-25 02:04:47,476 epoch 8 - iter 225/455 - loss 0.24089284 - samples/sec: 9.65 - lr: 0.000001
2022-04-25 02:05:06,576 epoch 8 - iter 270/455 - loss 0.24050137 - samples/sec: 9.43 - lr: 0.000001
2022-04-25 02:05:25,230 epoch 8 - iter 315/455 - loss 0.24061046 - samples/sec: 9.65 - lr: 0.000001
2022-04-25 02:05:43,780 epoch 8 - iter 360/455 - loss 0.24122314 - samples/sec: 9.71 - lr: 0.000001
2022-04-25 02:06:03,140 epoch 8 - iter 405/455 - loss 0.24068138 - samples/sec: 9.30 - lr: 0.000001
2022-04-25 02:06:22,289 epoch 8 - iter 450/455 - loss 0.24028428 - samples/sec: 9.40 - lr: 0.000001
2022-04-25 02:06:24,348 ----------------------------------------------------------------------------------------------------
2022-04-25 02:06:24,350 EPOCH 8 done: loss 0.2403 - lr 0.000001
2022-04-25 02:06:33,470 Evaluating as a multi-label problem: False
2022-04-25 02:06:33,485 DEV : loss 0.5238903760910034 - f1-score (micro avg)  0.0
2022-04-25 02:06:33,495 BAD EPOCHS (no improvement): 4
2022-04-25 02:06:33,497 ----------------------------------------------------------------------------------------------------
2022-04-25 02:06:52,645 epoch 9 - iter 45/455 - loss 0.22659045 - samples/sec: 9.40 - lr: 0.000001
2022-04-25 02:07:11,647 epoch 9 - iter 90/455 - loss 0.23007686 - samples/sec: 9.48 - lr: 0.000001
2022-04-25 02:07:30,432 epoch 9 - iter 135/455 - loss 0.23182102 - samples/sec: 9.59 - lr: 0.000001
2022-04-25 02:07:49,161 epoch 9 - iter 180/455 - loss 0.23484638 - samples/sec: 9.61 - lr: 0.000001
2022-04-25 02:08:08,185 epoch 9 - iter 225/455 - loss 0.23575341 - samples/sec: 9.46 - lr: 0.000001
2022-04-25 02:08:29,084 epoch 9 - iter 270/455 - loss 0.23430629 - samples/sec: 8.62 - lr: 0.000001
2022-04-25 02:08:48,058 epoch 9 - iter 315/455 - loss 0.23511980 - samples/sec: 9.49 - lr: 0.000001
2022-04-25 02:09:07,055 epoch 9 - iter 360/455 - loss 0.23591144 - samples/sec: 9.48 - lr: 0.000001
2022-04-25 02:09:25,960 epoch 9 - iter 405/455 - loss 0.23587694 - samples/sec: 9.52 - lr: 0.000001
2022-04-25 02:09:45,046 epoch 9 - iter 450/455 - loss 0.23596768 - samples/sec: 9.43 - lr: 0.000001
2022-04-25 02:09:47,133 ----------------------------------------------------------------------------------------------------
2022-04-25 02:09:47,134 EPOCH 9 done: loss 0.2358 - lr 0.000001
2022-04-25 02:09:53,727 Evaluating as a multi-label problem: False
2022-04-25 02:09:53,740 DEV : loss 0.5382402539253235 - f1-score (micro avg)  0.0
2022-04-25 02:09:53,749 BAD EPOCHS (no improvement): 4
2022-04-25 02:09:53,750 ----------------------------------------------------------------------------------------------------
2022-04-25 02:10:14,720 epoch 10 - iter 45/455 - loss 0.22667111 - samples/sec: 8.59 - lr: 0.000001
2022-04-25 02:10:34,134 epoch 10 - iter 90/455 - loss 0.22673460 - samples/sec: 9.27 - lr: 0.000000
2022-04-25 02:10:53,154 epoch 10 - iter 135/455 - loss 0.22714280 - samples/sec: 9.47 - lr: 0.000000
2022-04-25 02:11:12,101 epoch 10 - iter 180/455 - loss 0.22947185 - samples/sec: 9.50 - lr: 0.000000
2022-04-25 02:11:30,855 epoch 10 - iter 225/455 - loss 0.23026782 - samples/sec: 9.60 - lr: 0.000000
2022-04-25 02:11:49,560 epoch 10 - iter 270/455 - loss 0.23211704 - samples/sec: 9.63 - lr: 0.000000
2022-04-25 02:12:08,468 epoch 10 - iter 315/455 - loss 0.23132383 - samples/sec: 9.52 - lr: 0.000000
2022-04-25 02:12:27,224 epoch 10 - iter 360/455 - loss 0.23094819 - samples/sec: 9.60 - lr: 0.000000
2022-04-25 02:12:46,168 epoch 10 - iter 405/455 - loss 0.23152902 - samples/sec: 9.50 - lr: 0.000000
2022-04-25 02:13:07,714 epoch 10 - iter 450/455 - loss 0.23243307 - samples/sec: 8.36 - lr: 0.000000
2022-04-25 02:13:09,804 ----------------------------------------------------------------------------------------------------
2022-04-25 02:13:09,806 EPOCH 10 done: loss 0.2321 - lr 0.000000
2022-04-25 02:13:16,510 Evaluating as a multi-label problem: False
2022-04-25 02:13:16,522 DEV : loss 0.5321827530860901 - f1-score (micro avg)  0.0
2022-04-25 02:13:16,531 BAD EPOCHS (no improvement): 4
2022-04-25 02:13:19,604 ----------------------------------------------------------------------------------------------------
2022-04-25 02:13:19,607 Testing using last state of model ...
2022-04-25 02:13:30,230 Evaluating as a multi-label problem: False
2022-04-25 02:13:30,247 0.0	0.0	0.0	0.0
2022-04-25 02:13:30,248 
Results:
- F-score (micro) 0.0
- F-score (macro) 0.0
- Accuracy 0.0

By class:
              precision    recall  f1-score   support

         nk>     0.0000    0.0000    0.0000       0.0
         ORG     0.0000    0.0000    0.0000     687.0
         LOC     0.0000    0.0000    0.0000     304.0
        PENT     0.0000    0.0000    0.0000       6.0

   micro avg     0.0000    0.0000    0.0000     997.0
   macro avg     0.0000    0.0000    0.0000     997.0
weighted avg     0.0000    0.0000    0.0000     997.0

2022-04-25 02:13:30,248 ----------------------------------------------------------------------------------------------------