Inquirer_ner_loc / training.log
root
added the model files
8f0563d
2022-04-25 01:39:43,366 ----------------------------------------------------------------------------------------------------
2022-04-25 01:39:43,370 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): XLMRobertaModel(
(embeddings): RobertaEmbeddings(
(word_embeddings): Embedding(250002, 1024, padding_idx=1)
(position_embeddings): Embedding(514, 1024, padding_idx=1)
(token_type_embeddings): Embedding(1, 1024)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): RobertaEncoder(
(layer): ModuleList(
(0): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(1): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(2): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(3): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(4): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(5): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(6): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(7): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(8): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(9): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(10): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(11): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(12): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(13): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(14): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(15): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(16): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(17): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(18): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(19): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(20): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(21): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(22): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(23): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): RobertaPooler(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(activation): Tanh()
)
)
)
(word_dropout): WordDropout(p=0.05)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=1024, out_features=20, bias=True)
(loss_function): CrossEntropyLoss()
)"
2022-04-25 01:39:43,372 ----------------------------------------------------------------------------------------------------
2022-04-25 01:39:43,372 Corpus: "Corpus: 1820 train + 50 dev + 67 test sentences"
2022-04-25 01:39:43,373 ----------------------------------------------------------------------------------------------------
2022-04-25 01:39:43,374 Parameters:
2022-04-25 01:39:43,374 - learning_rate: "0.000005"
2022-04-25 01:39:43,375 - mini_batch_size: "4"
2022-04-25 01:39:43,375 - patience: "3"
2022-04-25 01:39:43,376 - anneal_factor: "0.5"
2022-04-25 01:39:43,377 - max_epochs: "10"
2022-04-25 01:39:43,378 - shuffle: "True"
2022-04-25 01:39:43,378 - train_with_dev: "False"
2022-04-25 01:39:43,379 - batch_growth_annealing: "False"
2022-04-25 01:39:43,379 ----------------------------------------------------------------------------------------------------
2022-04-25 01:39:43,380 Model training base path: "resources/taggers/ner_xlm_finedtuned_ck1_ft"
2022-04-25 01:39:43,381 ----------------------------------------------------------------------------------------------------
2022-04-25 01:39:43,381 Device: cuda:0
2022-04-25 01:39:43,382 ----------------------------------------------------------------------------------------------------
2022-04-25 01:39:43,382 Embeddings storage mode: none
2022-04-25 01:39:43,383 ----------------------------------------------------------------------------------------------------
2022-04-25 01:40:01,316 epoch 1 - iter 45/455 - loss 2.02383973 - samples/sec: 10.04 - lr: 0.000000
2022-04-25 01:40:19,778 epoch 1 - iter 90/455 - loss 1.77018784 - samples/sec: 9.75 - lr: 0.000001
2022-04-25 01:40:38,303 epoch 1 - iter 135/455 - loss 1.55487540 - samples/sec: 9.72 - lr: 0.000001
2022-04-25 01:40:57,281 epoch 1 - iter 180/455 - loss 1.34519623 - samples/sec: 9.49 - lr: 0.000002
2022-04-25 01:41:18,145 epoch 1 - iter 225/455 - loss 1.15539089 - samples/sec: 8.63 - lr: 0.000002
2022-04-25 01:41:36,602 epoch 1 - iter 270/455 - loss 1.02895662 - samples/sec: 9.76 - lr: 0.000003
2022-04-25 01:41:55,400 epoch 1 - iter 315/455 - loss 0.93416075 - samples/sec: 9.58 - lr: 0.000003
2022-04-25 01:42:14,308 epoch 1 - iter 360/455 - loss 0.86211554 - samples/sec: 9.52 - lr: 0.000004
2022-04-25 01:42:33,218 epoch 1 - iter 405/455 - loss 0.80736508 - samples/sec: 9.52 - lr: 0.000004
2022-04-25 01:42:52,404 epoch 1 - iter 450/455 - loss 0.76251684 - samples/sec: 9.38 - lr: 0.000005
2022-04-25 01:42:54,450 ----------------------------------------------------------------------------------------------------
2022-04-25 01:42:54,452 EPOCH 1 done: loss 0.7578 - lr 0.000005
2022-04-25 01:43:03,256 Evaluating as a multi-label problem: False
2022-04-25 01:43:03,269 DEV : loss 0.3607260286808014 - f1-score (micro avg) 0.0
2022-04-25 01:43:03,277 BAD EPOCHS (no improvement): 4
2022-04-25 01:43:03,278 ----------------------------------------------------------------------------------------------------
2022-04-25 01:43:22,465 epoch 2 - iter 45/455 - loss 0.35669344 - samples/sec: 9.38 - lr: 0.000005
2022-04-25 01:43:41,226 epoch 2 - iter 90/455 - loss 0.33744187 - samples/sec: 9.60 - lr: 0.000005
2022-04-25 01:44:00,335 epoch 2 - iter 135/455 - loss 0.33264492 - samples/sec: 9.42 - lr: 0.000005
2022-04-25 01:44:19,259 epoch 2 - iter 180/455 - loss 0.33442139 - samples/sec: 9.51 - lr: 0.000005
2022-04-25 01:44:37,971 epoch 2 - iter 225/455 - loss 0.33062050 - samples/sec: 9.62 - lr: 0.000005
2022-04-25 01:44:56,896 epoch 2 - iter 270/455 - loss 0.32856691 - samples/sec: 9.51 - lr: 0.000005
2022-04-25 01:45:17,782 epoch 2 - iter 315/455 - loss 0.32794608 - samples/sec: 8.62 - lr: 0.000005
2022-04-25 01:45:36,760 epoch 2 - iter 360/455 - loss 0.32718419 - samples/sec: 9.49 - lr: 0.000005
2022-04-25 01:45:55,772 epoch 2 - iter 405/455 - loss 0.32696006 - samples/sec: 9.47 - lr: 0.000005
2022-04-25 01:46:15,075 epoch 2 - iter 450/455 - loss 0.32726336 - samples/sec: 9.33 - lr: 0.000004
2022-04-25 01:46:17,246 ----------------------------------------------------------------------------------------------------
2022-04-25 01:46:17,247 EPOCH 2 done: loss 0.3274 - lr 0.000004
2022-04-25 01:46:23,646 Evaluating as a multi-label problem: False
2022-04-25 01:46:23,664 DEV : loss 0.44372475147247314 - f1-score (micro avg) 0.0
2022-04-25 01:46:23,675 BAD EPOCHS (no improvement): 4
2022-04-25 01:46:23,676 ----------------------------------------------------------------------------------------------------
2022-04-25 01:46:42,384 epoch 3 - iter 45/455 - loss 0.31045361 - samples/sec: 9.63 - lr: 0.000004
2022-04-25 01:47:03,681 epoch 3 - iter 90/455 - loss 0.30688918 - samples/sec: 8.45 - lr: 0.000004
2022-04-25 01:47:22,548 epoch 3 - iter 135/455 - loss 0.30176367 - samples/sec: 9.54 - lr: 0.000004
2022-04-25 01:47:41,337 epoch 3 - iter 180/455 - loss 0.29894450 - samples/sec: 9.58 - lr: 0.000004
2022-04-25 01:48:00,045 epoch 3 - iter 225/455 - loss 0.29867330 - samples/sec: 9.62 - lr: 0.000004
2022-04-25 01:48:18,928 epoch 3 - iter 270/455 - loss 0.29997778 - samples/sec: 9.54 - lr: 0.000004
2022-04-25 01:48:37,737 epoch 3 - iter 315/455 - loss 0.30151499 - samples/sec: 9.57 - lr: 0.000004
2022-04-25 01:48:56,808 epoch 3 - iter 360/455 - loss 0.30030851 - samples/sec: 9.44 - lr: 0.000004
2022-04-25 01:49:15,866 epoch 3 - iter 405/455 - loss 0.29995926 - samples/sec: 9.45 - lr: 0.000004
2022-04-25 01:49:37,329 epoch 3 - iter 450/455 - loss 0.30000599 - samples/sec: 8.39 - lr: 0.000004
2022-04-25 01:49:39,502 ----------------------------------------------------------------------------------------------------
2022-04-25 01:49:39,503 EPOCH 3 done: loss 0.3004 - lr 0.000004
2022-04-25 01:49:46,186 Evaluating as a multi-label problem: False
2022-04-25 01:49:46,198 DEV : loss 0.4250624477863312 - f1-score (micro avg) 0.0
2022-04-25 01:49:46,207 BAD EPOCHS (no improvement): 4
2022-04-25 01:49:46,208 ----------------------------------------------------------------------------------------------------
2022-04-25 01:50:04,886 epoch 4 - iter 45/455 - loss 0.27018579 - samples/sec: 9.64 - lr: 0.000004
2022-04-25 01:50:23,747 epoch 4 - iter 90/455 - loss 0.28505798 - samples/sec: 9.55 - lr: 0.000004
2022-04-25 01:50:42,591 epoch 4 - iter 135/455 - loss 0.28106699 - samples/sec: 9.55 - lr: 0.000004
2022-04-25 01:51:01,834 epoch 4 - iter 180/455 - loss 0.28213592 - samples/sec: 9.36 - lr: 0.000004
2022-04-25 01:51:22,523 epoch 4 - iter 225/455 - loss 0.28339344 - samples/sec: 8.70 - lr: 0.000004
2022-04-25 01:51:41,984 epoch 4 - iter 270/455 - loss 0.28600075 - samples/sec: 9.25 - lr: 0.000004
2022-04-25 01:52:01,001 epoch 4 - iter 315/455 - loss 0.28507349 - samples/sec: 9.47 - lr: 0.000004
2022-04-25 01:52:19,572 epoch 4 - iter 360/455 - loss 0.28385244 - samples/sec: 9.70 - lr: 0.000003
2022-04-25 01:52:38,471 epoch 4 - iter 405/455 - loss 0.28397099 - samples/sec: 9.53 - lr: 0.000003
2022-04-25 01:52:57,371 epoch 4 - iter 450/455 - loss 0.28432390 - samples/sec: 9.53 - lr: 0.000003
2022-04-25 01:52:59,489 ----------------------------------------------------------------------------------------------------
2022-04-25 01:52:59,490 EPOCH 4 done: loss 0.2844 - lr 0.000003
2022-04-25 01:53:06,144 Evaluating as a multi-label problem: False
2022-04-25 01:53:06,157 DEV : loss 0.4436105787754059 - f1-score (micro avg) 0.0
2022-04-25 01:53:06,166 BAD EPOCHS (no improvement): 4
2022-04-25 01:53:06,168 ----------------------------------------------------------------------------------------------------
2022-04-25 01:53:27,165 epoch 5 - iter 45/455 - loss 0.26753679 - samples/sec: 8.58 - lr: 0.000003
2022-04-25 01:53:46,071 epoch 5 - iter 90/455 - loss 0.27230605 - samples/sec: 9.52 - lr: 0.000003
2022-04-25 01:54:04,859 epoch 5 - iter 135/455 - loss 0.27246786 - samples/sec: 9.58 - lr: 0.000003
2022-04-25 01:54:23,704 epoch 5 - iter 180/455 - loss 0.27259198 - samples/sec: 9.55 - lr: 0.000003
2022-04-25 01:54:42,577 epoch 5 - iter 225/455 - loss 0.27431760 - samples/sec: 9.54 - lr: 0.000003
2022-04-25 01:55:01,271 epoch 5 - iter 270/455 - loss 0.27392484 - samples/sec: 9.63 - lr: 0.000003
2022-04-25 01:55:20,066 epoch 5 - iter 315/455 - loss 0.27357625 - samples/sec: 9.58 - lr: 0.000003
2022-04-25 01:55:39,125 epoch 5 - iter 360/455 - loss 0.27202662 - samples/sec: 9.45 - lr: 0.000003
2022-04-25 01:55:57,915 epoch 5 - iter 405/455 - loss 0.27381644 - samples/sec: 9.58 - lr: 0.000003
2022-04-25 01:56:19,310 epoch 5 - iter 450/455 - loss 0.27384803 - samples/sec: 8.42 - lr: 0.000003
2022-04-25 01:56:21,405 ----------------------------------------------------------------------------------------------------
2022-04-25 01:56:21,405 EPOCH 5 done: loss 0.2735 - lr 0.000003
2022-04-25 01:56:27,996 Evaluating as a multi-label problem: False
2022-04-25 01:56:28,008 DEV : loss 0.46451953053474426 - f1-score (micro avg) 0.0
2022-04-25 01:56:28,017 BAD EPOCHS (no improvement): 4
2022-04-25 01:56:28,018 ----------------------------------------------------------------------------------------------------
2022-04-25 01:56:46,994 epoch 6 - iter 45/455 - loss 0.26238774 - samples/sec: 9.49 - lr: 0.000003
2022-04-25 01:57:06,067 epoch 6 - iter 90/455 - loss 0.26228525 - samples/sec: 9.44 - lr: 0.000003
2022-04-25 01:57:25,103 epoch 6 - iter 135/455 - loss 0.26298919 - samples/sec: 9.46 - lr: 0.000003
2022-04-25 01:57:45,904 epoch 6 - iter 180/455 - loss 0.26033810 - samples/sec: 8.66 - lr: 0.000003
2022-04-25 01:58:04,752 epoch 6 - iter 225/455 - loss 0.25980613 - samples/sec: 9.55 - lr: 0.000003
2022-04-25 01:58:23,635 epoch 6 - iter 270/455 - loss 0.25741937 - samples/sec: 9.53 - lr: 0.000002
2022-04-25 01:58:42,770 epoch 6 - iter 315/455 - loss 0.25761401 - samples/sec: 9.41 - lr: 0.000002
2022-04-25 01:59:01,669 epoch 6 - iter 360/455 - loss 0.25802951 - samples/sec: 9.53 - lr: 0.000002
2022-04-25 01:59:20,507 epoch 6 - iter 405/455 - loss 0.25786031 - samples/sec: 9.56 - lr: 0.000002
2022-04-25 01:59:39,104 epoch 6 - iter 450/455 - loss 0.25875289 - samples/sec: 9.68 - lr: 0.000002
2022-04-25 01:59:41,245 ----------------------------------------------------------------------------------------------------
2022-04-25 01:59:41,247 EPOCH 6 done: loss 0.2586 - lr 0.000002
2022-04-25 01:59:50,159 Evaluating as a multi-label problem: False
2022-04-25 01:59:50,176 DEV : loss 0.5034258961677551 - f1-score (micro avg) 0.0
2022-04-25 01:59:50,186 BAD EPOCHS (no improvement): 4
2022-04-25 01:59:50,188 ----------------------------------------------------------------------------------------------------
2022-04-25 02:00:09,428 epoch 7 - iter 45/455 - loss 0.25272579 - samples/sec: 9.36 - lr: 0.000002
2022-04-25 02:00:28,674 epoch 7 - iter 90/455 - loss 0.24877335 - samples/sec: 9.35 - lr: 0.000002
2022-04-25 02:00:47,419 epoch 7 - iter 135/455 - loss 0.25029754 - samples/sec: 9.61 - lr: 0.000002
2022-04-25 02:01:06,330 epoch 7 - iter 180/455 - loss 0.24783496 - samples/sec: 9.52 - lr: 0.000002
2022-04-25 02:01:25,050 epoch 7 - iter 225/455 - loss 0.24702442 - samples/sec: 9.62 - lr: 0.000002
2022-04-25 02:01:43,981 epoch 7 - iter 270/455 - loss 0.24574698 - samples/sec: 9.51 - lr: 0.000002
2022-04-25 02:02:02,729 epoch 7 - iter 315/455 - loss 0.24814380 - samples/sec: 9.60 - lr: 0.000002
2022-04-25 02:02:24,035 epoch 7 - iter 360/455 - loss 0.24891601 - samples/sec: 8.45 - lr: 0.000002
2022-04-25 02:02:43,529 epoch 7 - iter 405/455 - loss 0.24938588 - samples/sec: 9.24 - lr: 0.000002
2022-04-25 02:03:02,611 epoch 7 - iter 450/455 - loss 0.24975402 - samples/sec: 9.44 - lr: 0.000002
2022-04-25 02:03:04,674 ----------------------------------------------------------------------------------------------------
2022-04-25 02:03:04,675 EPOCH 7 done: loss 0.2496 - lr 0.000002
2022-04-25 02:03:11,014 Evaluating as a multi-label problem: False
2022-04-25 02:03:11,028 DEV : loss 0.5326654314994812 - f1-score (micro avg) 0.0
2022-04-25 02:03:11,037 BAD EPOCHS (no improvement): 4
2022-04-25 02:03:11,039 ----------------------------------------------------------------------------------------------------
2022-04-25 02:03:29,928 epoch 8 - iter 45/455 - loss 0.23902515 - samples/sec: 9.53 - lr: 0.000002
2022-04-25 02:03:48,547 epoch 8 - iter 90/455 - loss 0.24182299 - samples/sec: 9.67 - lr: 0.000002
2022-04-25 02:04:09,761 epoch 8 - iter 135/455 - loss 0.23794694 - samples/sec: 8.49 - lr: 0.000002
2022-04-25 02:04:28,820 epoch 8 - iter 180/455 - loss 0.23901632 - samples/sec: 9.45 - lr: 0.000001
2022-04-25 02:04:47,476 epoch 8 - iter 225/455 - loss 0.24089284 - samples/sec: 9.65 - lr: 0.000001
2022-04-25 02:05:06,576 epoch 8 - iter 270/455 - loss 0.24050137 - samples/sec: 9.43 - lr: 0.000001
2022-04-25 02:05:25,230 epoch 8 - iter 315/455 - loss 0.24061046 - samples/sec: 9.65 - lr: 0.000001
2022-04-25 02:05:43,780 epoch 8 - iter 360/455 - loss 0.24122314 - samples/sec: 9.71 - lr: 0.000001
2022-04-25 02:06:03,140 epoch 8 - iter 405/455 - loss 0.24068138 - samples/sec: 9.30 - lr: 0.000001
2022-04-25 02:06:22,289 epoch 8 - iter 450/455 - loss 0.24028428 - samples/sec: 9.40 - lr: 0.000001
2022-04-25 02:06:24,348 ----------------------------------------------------------------------------------------------------
2022-04-25 02:06:24,350 EPOCH 8 done: loss 0.2403 - lr 0.000001
2022-04-25 02:06:33,470 Evaluating as a multi-label problem: False
2022-04-25 02:06:33,485 DEV : loss 0.5238903760910034 - f1-score (micro avg) 0.0
2022-04-25 02:06:33,495 BAD EPOCHS (no improvement): 4
2022-04-25 02:06:33,497 ----------------------------------------------------------------------------------------------------
2022-04-25 02:06:52,645 epoch 9 - iter 45/455 - loss 0.22659045 - samples/sec: 9.40 - lr: 0.000001
2022-04-25 02:07:11,647 epoch 9 - iter 90/455 - loss 0.23007686 - samples/sec: 9.48 - lr: 0.000001
2022-04-25 02:07:30,432 epoch 9 - iter 135/455 - loss 0.23182102 - samples/sec: 9.59 - lr: 0.000001
2022-04-25 02:07:49,161 epoch 9 - iter 180/455 - loss 0.23484638 - samples/sec: 9.61 - lr: 0.000001
2022-04-25 02:08:08,185 epoch 9 - iter 225/455 - loss 0.23575341 - samples/sec: 9.46 - lr: 0.000001
2022-04-25 02:08:29,084 epoch 9 - iter 270/455 - loss 0.23430629 - samples/sec: 8.62 - lr: 0.000001
2022-04-25 02:08:48,058 epoch 9 - iter 315/455 - loss 0.23511980 - samples/sec: 9.49 - lr: 0.000001
2022-04-25 02:09:07,055 epoch 9 - iter 360/455 - loss 0.23591144 - samples/sec: 9.48 - lr: 0.000001
2022-04-25 02:09:25,960 epoch 9 - iter 405/455 - loss 0.23587694 - samples/sec: 9.52 - lr: 0.000001
2022-04-25 02:09:45,046 epoch 9 - iter 450/455 - loss 0.23596768 - samples/sec: 9.43 - lr: 0.000001
2022-04-25 02:09:47,133 ----------------------------------------------------------------------------------------------------
2022-04-25 02:09:47,134 EPOCH 9 done: loss 0.2358 - lr 0.000001
2022-04-25 02:09:53,727 Evaluating as a multi-label problem: False
2022-04-25 02:09:53,740 DEV : loss 0.5382402539253235 - f1-score (micro avg) 0.0
2022-04-25 02:09:53,749 BAD EPOCHS (no improvement): 4
2022-04-25 02:09:53,750 ----------------------------------------------------------------------------------------------------
2022-04-25 02:10:14,720 epoch 10 - iter 45/455 - loss 0.22667111 - samples/sec: 8.59 - lr: 0.000001
2022-04-25 02:10:34,134 epoch 10 - iter 90/455 - loss 0.22673460 - samples/sec: 9.27 - lr: 0.000000
2022-04-25 02:10:53,154 epoch 10 - iter 135/455 - loss 0.22714280 - samples/sec: 9.47 - lr: 0.000000
2022-04-25 02:11:12,101 epoch 10 - iter 180/455 - loss 0.22947185 - samples/sec: 9.50 - lr: 0.000000
2022-04-25 02:11:30,855 epoch 10 - iter 225/455 - loss 0.23026782 - samples/sec: 9.60 - lr: 0.000000
2022-04-25 02:11:49,560 epoch 10 - iter 270/455 - loss 0.23211704 - samples/sec: 9.63 - lr: 0.000000
2022-04-25 02:12:08,468 epoch 10 - iter 315/455 - loss 0.23132383 - samples/sec: 9.52 - lr: 0.000000
2022-04-25 02:12:27,224 epoch 10 - iter 360/455 - loss 0.23094819 - samples/sec: 9.60 - lr: 0.000000
2022-04-25 02:12:46,168 epoch 10 - iter 405/455 - loss 0.23152902 - samples/sec: 9.50 - lr: 0.000000
2022-04-25 02:13:07,714 epoch 10 - iter 450/455 - loss 0.23243307 - samples/sec: 8.36 - lr: 0.000000
2022-04-25 02:13:09,804 ----------------------------------------------------------------------------------------------------
2022-04-25 02:13:09,806 EPOCH 10 done: loss 0.2321 - lr 0.000000
2022-04-25 02:13:16,510 Evaluating as a multi-label problem: False
2022-04-25 02:13:16,522 DEV : loss 0.5321827530860901 - f1-score (micro avg) 0.0
2022-04-25 02:13:16,531 BAD EPOCHS (no improvement): 4
2022-04-25 02:13:19,604 ----------------------------------------------------------------------------------------------------
2022-04-25 02:13:19,607 Testing using last state of model ...
2022-04-25 02:13:30,230 Evaluating as a multi-label problem: False
2022-04-25 02:13:30,247 0.0 0.0 0.0 0.0
2022-04-25 02:13:30,248
Results:
- F-score (micro) 0.0
- F-score (macro) 0.0
- Accuracy 0.0
By class:
precision recall f1-score support
nk> 0.0000 0.0000 0.0000 0.0
ORG 0.0000 0.0000 0.0000 687.0
LOC 0.0000 0.0000 0.0000 304.0
PENT 0.0000 0.0000 0.0000 6.0
micro avg 0.0000 0.0000 0.0000 997.0
macro avg 0.0000 0.0000 0.0000 997.0
weighted avg 0.0000 0.0000 0.0000 997.0
2022-04-25 02:13:30,248 ----------------------------------------------------------------------------------------------------