|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-xls-r-300m |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
- cer |
|
model-index: |
|
- name: wav2vec2-large-xls-r-300m-hi |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 15 |
|
type: mozilla-foundation/common_voice_15_0 |
|
args: hi |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 29.34 |
|
- name: Test CER |
|
type: cer |
|
value: 7.86 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 8 |
|
type: mozilla-foundation/common_voice_8_0 |
|
args: hi |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 52.09 |
|
- name: Test CER |
|
type: cer |
|
value: 17.90 |
|
datasets: |
|
- mozilla-foundation/common_voice_15_0 |
|
language: |
|
- hi |
|
library_name: transformers |
|
pipeline_tag: automatic-speech-recognition |
|
--- |
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-large-xls-r-300m-hi |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3611 |
|
- Wer: 29.92% |
|
- Cer: 7.86% |
|
|
|
View the results on Kaggle Notebook: https://www.kaggle.com/code/kingabzpro/wav2vec-2-eval |
|
|
|
## Evaluation |
|
|
|
```python |
|
import torch |
|
from datasets import load_dataset, load_metric |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import librosa |
|
import unicodedata |
|
import re |
|
|
|
|
|
test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "hi", split="test") |
|
wer = load_metric("wer") |
|
cer = load_metric("cer") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("SakshiRathi77/wav2vec2_xlsr_300m") |
|
model = Wav2Vec2ForCTC.from_pretrained("SakshiRathi77/wav2vec2_xlsr_300m") |
|
model.to("cuda") |
|
|
|
|
|
# Preprocessing the datasets. |
|
def speech_file_to_array_fn(batch): |
|
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\β\%\β\β\οΏ½\β\'\|\&\β]' |
|
remove_en = '[A-Za-z]' |
|
batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"].lower()) |
|
batch["sentence"] = re.sub(remove_en, "", batch["sentence"]).lower() |
|
batch["sentence"] = unicodedata.normalize("NFKC", batch["sentence"]) |
|
|
|
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) |
|
batch["speech"] = speech_array |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def evaluate(batch): |
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to("cuda")).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["pred_strings"] = processor.batch_decode(pred_ids, skip_special_tokens=True) |
|
return batch |
|
|
|
result = test_dataset.map(evaluate, batched=True, batch_size=8) |
|
|
|
print("WER: {}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) |
|
print("CER: {}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"]))) |
|
|
|
``` |
|
**WER: 52.09850206372026** |
|
|
|
**CER: 17.902923538230883** |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 300 |
|
- num_epochs: 100 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:| |
|
| 7.0431 | 19.05 | 300 | 3.4423 | 1.0 | 1.0 | |
|
| 2.3233 | 38.1 | 600 | 0.5965 | 0.4757 | 0.1329 | |
|
| 0.5676 | 57.14 | 900 | 0.3962 | 0.3584 | 0.0954 | |
|
| 0.3611 | 76.19 | 1200 | 0.3651 | 0.3190 | 0.0820 | |
|
| 0.2996 | 95.24 | 1500 | 0.3611 | 0.2992 | 0.0786 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.0 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.13.3 |