a2c-PandaReachDense-v2 / config.json
Samalabama66's picture
Initial commit
de89b09
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x79813078b400>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x798130790600>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690444924278807641, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAR03pPrlsSDwZzQ8/R03pPrlsSDwZzQ8/R03pPrlsSDwZzQ8/R03pPrlsSDwZzQ8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/5VLPf3NNL9rII2/mwU3vlYnoj/VHi8/doVYvxCaqb/awra/r36Rv5VCXj8rUwq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABHTek+uWxIPBnNDz9ufYM95j+Lu+VEgT1HTek+uWxIPBnNDz9ufYM95j+Lu+VEgT1HTek+uWxIPBnNDz9ufYM95j+Lu+VEgT1HTek+uWxIPBnNDz9ufYM95j+Lu+VEgT2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4556677 0.01223295 0.5617233 ]\n [0.4556677 0.01223295 0.5617233 ]\n [0.4556677 0.01223295 0.5617233 ]\n [0.4556677 0.01223295 0.5617233 ]]", "desired_goal": "[[ 0.04970359 -0.70626813 -1.1025518 ]\n [-0.17873232 1.2668254 0.6840642 ]\n [-0.84578645 -1.3250141 -1.4278214 ]\n [-1.1366786 0.86820346 -0.54033154]]", "observation": "[[ 0.4556677 0.01223295 0.5617233 0.06420408 -0.00424956 0.06311969]\n [ 0.4556677 0.01223295 0.5617233 0.06420408 -0.00424956 0.06311969]\n [ 0.4556677 0.01223295 0.5617233 0.06420408 -0.00424956 0.06311969]\n [ 0.4556677 0.01223295 0.5617233 0.06420408 -0.00424956 0.06311969]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzh4Gvq/YPL3nk3c+wxkSvtXdw7wtUnM9J87ovdgoC76u/MQ9kcEnu1FQAD41Qqs7lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.13097689 -0.04610508 0.24177514]\n [-0.1426764 -0.02390949 0.05940454]\n [-0.11367445 -0.135898 0.09618507]\n [-0.00255976 0.12530638 0.0052264 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINQhzu5f76b+UhpRSlIwBbJRLMowBdJRHQKY6dp8neBR1fZQoaAZoCWgPQwjmIVM+BFXPv5SGlFKUaBVLMmgWR0CmOh1clgMMdX2UKGgGaAloD0MIpp2ayw2G1L+UhpRSlGgVSzJoFkdApjnGB19v0nV9lChoBmgJaA9DCIGXGTbK+t2/lIaUUpRoFUsyaBZHQKY5cHObAk91fZQoaAZoCWgPQwi5qBYRxeTpv5SGlFKUaBVLMmgWR0CmO3re67NCdX2UKGgGaAloD0MI3EduTbqt4r+UhpRSlGgVSzJoFkdApjsh7Z39rHV9lChoBmgJaA9DCCSX/5B++9G/lIaUUpRoFUsyaBZHQKY6yojv/ip1fZQoaAZoCWgPQwgr+64I/jfqv5SGlFKUaBVLMmgWR0CmOnVHFxXGdX2UKGgGaAloD0MIML39uWjI6b+UhpRSlGgVSzJoFkdApjySbH6uXHV9lChoBmgJaA9DCMjShy6ob+W/lIaUUpRoFUsyaBZHQKY8OX2M85l1fZQoaAZoCWgPQwjAlleut03mv5SGlFKUaBVLMmgWR0CmO+IwmE5AdX2UKGgGaAloD0MI1c4wtaUO4r+UhpRSlGgVSzJoFkdApjuMuOCGvnV9lChoBmgJaA9DCFgfD313K92/lIaUUpRoFUsyaBZHQKY9nmgam411fZQoaAZoCWgPQwgpQup29hXpv5SGlFKUaBVLMmgWR0CmPUVPWQOndX2UKGgGaAloD0MIBtfc0f/y6L+UhpRSlGgVSzJoFkdApjztqHoHLXV9lChoBmgJaA9DCIveqYB7nt6/lIaUUpRoFUsyaBZHQKY8mDXe3x51fZQoaAZoCWgPQwhZUYNpGD7dv5SGlFKUaBVLMmgWR0CmPqY6GQCCdX2UKGgGaAloD0MIaM76lGOy4L+UhpRSlGgVSzJoFkdApj5NUKiPAHV9lChoBmgJaA9DCBg/jXvzG+u/lIaUUpRoFUsyaBZHQKY99pTMqz91fZQoaAZoCWgPQwifkJ23sdnZv5SGlFKUaBVLMmgWR0CmPaGCyyD7dX2UKGgGaAloD0MIf6KyYU1l5r+UhpRSlGgVSzJoFkdApkBtKujh1nV9lChoBmgJaA9DCOlGWFTE6e2/lIaUUpRoFUsyaBZHQKZAFPmgam51fZQoaAZoCWgPQwgVrHE2HYHrv5SGlFKUaBVLMmgWR0CmP75eAuqWdX2UKGgGaAloD0MIQYAMHTso6r+UhpRSlGgVSzJoFkdApj9pwuM+/3V9lChoBmgJaA9DCJChYweVuN+/lIaUUpRoFUsyaBZHQKZCGl2vB8B1fZQoaAZoCWgPQwji5H6HokDlv5SGlFKUaBVLMmgWR0CmQcIatLcsdX2UKGgGaAloD0MIExCTcCGP47+UhpRSlGgVSzJoFkdApkFrdcjZ+XV9lChoBmgJaA9DCCF1O/vKg+2/lIaUUpRoFUsyaBZHQKZBFo5ggHN1fZQoaAZoCWgPQwgnhA66hEPkv5SGlFKUaBVLMmgWR0CmQ8Qx33YddX2UKGgGaAloD0MInnsPlxx35L+UhpRSlGgVSzJoFkdApkNrkwN9Y3V9lChoBmgJaA9DCHb7rDJTWuS/lIaUUpRoFUsyaBZHQKZDFQVsUIt1fZQoaAZoCWgPQwjEsMOY9Pf2v5SGlFKUaBVLMmgWR0CmQsAKWszVdX2UKGgGaAloD0MI4BCq1OwB8r+UhpRSlGgVSzJoFkdApkWmdZq20HV9lChoBmgJaA9DCOLIA5FFGua/lIaUUpRoFUsyaBZHQKZFTjbSJCV1fZQoaAZoCWgPQwg+yogLQKPev5SGlFKUaBVLMmgWR0CmRPdoN/e+dX2UKGgGaAloD0MIIcoXtJCA7r+UhpRSlGgVSzJoFkdApkSj7j1f3XV9lChoBmgJaA9DCKCH2jaMAuC/lIaUUpRoFUsyaBZHQKZGwQf6oEV1fZQoaAZoCWgPQwg5l+Kqsm/jv5SGlFKUaBVLMmgWR0CmRmhHTZxrdX2UKGgGaAloD0MIH/ZCAdvB4r+UhpRSlGgVSzJoFkdApkYQ2Q4jr3V9lChoBmgJaA9DCNWvdD48S++/lIaUUpRoFUsyaBZHQKZFu3vQWvd1fZQoaAZoCWgPQwhXlX1XBH/jv5SGlFKUaBVLMmgWR0CmR8OPeYUndX2UKGgGaAloD0MIKLuZ0Y8G7b+UhpRSlGgVSzJoFkdApkdqe/YapHV9lChoBmgJaA9DCMfUXdkFQ/C/lIaUUpRoFUsyaBZHQKZHEu/UONJ1fZQoaAZoCWgPQwivP4nPneDhv5SGlFKUaBVLMmgWR0CmRr1x0dR0dX2UKGgGaAloD0MIfSHkvP8P87+UhpRSlGgVSzJoFkdApkjBf4REnnV9lChoBmgJaA9DCAyVfy2v3Oa/lIaUUpRoFUsyaBZHQKZIaInBtUJ1fZQoaAZoCWgPQwhORpVh3A3lv5SGlFKUaBVLMmgWR0CmSBEi+tbLdX2UKGgGaAloD0MI9WkV/aGZ37+UhpRSlGgVSzJoFkdApke7x7RfGHV9lChoBmgJaA9DCLwEpz6QPOG/lIaUUpRoFUsyaBZHQKZJ0vEjxCp1fZQoaAZoCWgPQwgke4SaIVXev5SGlFKUaBVLMmgWR0CmSXmZE2HddX2UKGgGaAloD0MI/Wt55Xrb4b+UhpRSlGgVSzJoFkdApkkiAz544nV9lChoBmgJaA9DCFuzlZf8T+m/lIaUUpRoFUsyaBZHQKZIzGWD6Fd1fZQoaAZoCWgPQwhmhSLdz6nqv5SGlFKUaBVLMmgWR0CmSs41YQrddX2UKGgGaAloD0MI8yA9RQ4R4L+UhpRSlGgVSzJoFkdApkp1Muez2XV9lChoBmgJaA9DCHwm++dpwO+/lIaUUpRoFUsyaBZHQKZKHc+qzZ91fZQoaAZoCWgPQwhPP6iLFErvv5SGlFKUaBVLMmgWR0CmSchtk4FSdX2UKGgGaAloD0MIJ77aUZyj37+UhpRSlGgVSzJoFkdApkvSm/FirnV9lChoBmgJaA9DCHBCIQIOIeC/lIaUUpRoFUsyaBZHQKZLeWuX/o91fZQoaAZoCWgPQwj2tMNfk7Xiv5SGlFKUaBVLMmgWR0CmSyHo5ggHdX2UKGgGaAloD0MIJEIj2Lj+5r+UhpRSlGgVSzJoFkdApkrMidJ8OXV9lChoBmgJaA9DCLAApgwc0Oa/lIaUUpRoFUsyaBZHQKZM5m4iHIp1fZQoaAZoCWgPQwgfZcQFoNHnv5SGlFKUaBVLMmgWR0CmTI4YixFBdX2UKGgGaAloD0MILC6Oyk1U4b+UhpRSlGgVSzJoFkdApkw2hRIjGHV9lChoBmgJaA9DCNqM0xBV+Nq/lIaUUpRoFUsyaBZHQKZL4SYgJTl1fZQoaAZoCWgPQwjR60/ic6fnv5SGlFKUaBVLMmgWR0CmTexlxwQ2dX2UKGgGaAloD0MIKq2/JQB/5b+UhpRSlGgVSzJoFkdApk2TIq9XcXV9lChoBmgJaA9DCBSuR+F6VPO/lIaUUpRoFUsyaBZHQKZNO3PzFuN1fZQoaAZoCWgPQwhiwJKrWHzhv5SGlFKUaBVLMmgWR0CmTOYMvyskdX2UKGgGaAloD0MIUfhsHRzs17+UhpRSlGgVSzJoFkdApk7jIaLn93V9lChoBmgJaA9DCCcxCKwcWuG/lIaUUpRoFUsyaBZHQKZOiinpB5Z1fZQoaAZoCWgPQwjV7ewrD9Lrv5SGlFKUaBVLMmgWR0CmTjLBsQ/YdX2UKGgGaAloD0MI4gLQKF068L+UhpRSlGgVSzJoFkdApk3dW+49YHV9lChoBmgJaA9DCDkoYabt3+C/lIaUUpRoFUsyaBZHQKZP4fhddE91fZQoaAZoCWgPQwjiOsYVF0fwv5SGlFKUaBVLMmgWR0CmT4jUNKAbdX2UKGgGaAloD0MIx549l6lJ5L+UhpRSlGgVSzJoFkdApk8xKODJ2nV9lChoBmgJaA9DCJYEqKllK/K/lIaUUpRoFUsyaBZHQKZO25aNdZ91fZQoaAZoCWgPQwi9VGzM64jlv5SGlFKUaBVLMmgWR0CmUQXzlLezdX2UKGgGaAloD0MI2QbuQJ1y4b+UhpRSlGgVSzJoFkdAplCstdzGP3V9lChoBmgJaA9DCHNIaqFk8uC/lIaUUpRoFUsyaBZHQKZQVSx7iQ11fZQoaAZoCWgPQwha1v1jIbrpv5SGlFKUaBVLMmgWR0CmUABnrY5DdX2UKGgGaAloD0MIvAUSFD9G5L+UhpRSlGgVSzJoFkdAplIHKr7wa3V9lChoBmgJaA9DCCF4fHvXoPC/lIaUUpRoFUsyaBZHQKZRrdkauOl1fZQoaAZoCWgPQwjtDFNb6iDev5SGlFKUaBVLMmgWR0CmUVYmb9ZSdX2UKGgGaAloD0MI66f/rPnx2b+UhpRSlGgVSzJoFkdAplEAy44IbHV9lChoBmgJaA9DCIBgjh6/N+W/lIaUUpRoFUsyaBZHQKZTEOMERrd1fZQoaAZoCWgPQwgN4gM7/gvav5SGlFKUaBVLMmgWR0CmUrerMkhSdX2UKGgGaAloD0MI1As+zcmL1L+UhpRSlGgVSzJoFkdAplJgOrhisnV9lChoBmgJaA9DCONuEK0V7ey/lIaUUpRoFUsyaBZHQKZSCuXeFcp1fZQoaAZoCWgPQwhoXaPlQI/pv5SGlFKUaBVLMmgWR0CmVBvTXrdFdX2UKGgGaAloD0MI662BrRIs2L+UhpRSlGgVSzJoFkdAplPC08eS0XV9lChoBmgJaA9DCETbMXVXduO/lIaUUpRoFUsyaBZHQKZTa1WsA/91fZQoaAZoCWgPQwh4uB0aFqPcv5SGlFKUaBVLMmgWR0CmUxYetCAudX2UKGgGaAloD0MIUz4EVaPX5L+UhpRSlGgVSzJoFkdAplUWaBqbjXV9lChoBmgJaA9DCFHAdjBiH+q/lIaUUpRoFUsyaBZHQKZUvY3eenR1fZQoaAZoCWgPQwg/H2XEBSDpv5SGlFKUaBVLMmgWR0CmVGXnZCfIdX2UKGgGaAloD0MI6gYKvJNP4r+UhpRSlGgVSzJoFkdAplQQzYVZcXV9lChoBmgJaA9DCJZ31QPmIeq/lIaUUpRoFUsyaBZHQKZWEIhyKel1fZQoaAZoCWgPQwj1hZDz/j/Rv5SGlFKUaBVLMmgWR0CmVbfI0ZWJdX2UKGgGaAloD0MIxw2/m25Z47+UhpRSlGgVSzJoFkdAplVgjps41nV9lChoBmgJaA9DCE/rNqj91sC/lIaUUpRoFUsyaBZHQKZVC35N47l1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}