Edit model card

OrpoLlama-3-8B-Instruct

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0517
  • Rewards/chosen: -0.0621
  • Rewards/rejected: -0.0634
  • Rewards/accuracies: 0.6000
  • Rewards/margins: 0.0013
  • Logps/rejected: -0.6340
  • Logps/chosen: -0.6207
  • Logits/rejected: -0.2825
  • Logits/chosen: -0.2736
  • Nll Loss: 0.9848
  • Log Odds Ratio: -0.6691
  • Log Odds Chosen: 0.1127

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Nll Loss Log Odds Ratio Log Odds Chosen
2.2564 0.5980 74 1.8521 -0.1306 -0.1270 0.6000 -0.0036 -1.2696 -1.3055 -0.4912 -0.5850 1.7776 -0.7454 -0.0391
1.8749 1.1960 148 1.3145 -0.0855 -0.0879 0.6000 0.0024 -0.8795 -0.8553 -0.2945 -0.2832 1.2482 -0.6628 0.1091
1.1933 1.7939 222 1.1033 -0.0662 -0.0667 0.6000 0.0005 -0.6671 -0.6624 -0.2268 -0.2101 1.0354 -0.6787 0.0828
0.8761 2.3919 296 1.0517 -0.0621 -0.0634 0.6000 0.0013 -0.6340 -0.6207 -0.2825 -0.2736 0.9848 -0.6691 0.1127

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
64
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Samhita/OrpoLlama-3-8B-Instruct

Adapter
(615)
this model