Samhita's picture
End of training
53bb670 verified
|
raw
history blame
3.04 kB
metadata
base_model: meta-llama/Meta-Llama-3-8B-Instruct
library_name: peft
license: llama3
tags:
  - trl
  - orpo
  - generated_from_trainer
model-index:
  - name: OrpoLlama-3-8B-Instruct
    results: []

OrpoLlama-3-8B-Instruct

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1648
  • Rewards/chosen: -0.0603
  • Rewards/rejected: -0.0824
  • Rewards/accuracies: 0.5
  • Rewards/margins: 0.0221
  • Logps/rejected: -0.8240
  • Logps/chosen: -0.6033
  • Logits/rejected: -0.1024
  • Logits/chosen: -0.2381
  • Nll Loss: 1.1016
  • Log Odds Ratio: -0.6324
  • Log Odds Chosen: 0.4547

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Nll Loss Log Odds Ratio Log Odds Chosen
0.95 0.5980 74 1.2436 -0.0675 -0.0830 0.4000 0.0155 -0.8295 -0.6746 -0.2051 -0.3444 1.1740 -0.6961 0.2761
0.9613 1.1960 148 1.1952 -0.0621 -0.0799 0.4000 0.0179 -0.7994 -0.6209 -0.1256 -0.2699 1.1280 -0.6717 0.3516
1.5258 1.7939 222 1.1740 -0.0609 -0.0818 0.5 0.0209 -0.8183 -0.6094 -0.1255 -0.2648 1.1099 -0.6414 0.4267
1.1971 2.3919 296 1.1648 -0.0603 -0.0824 0.5 0.0221 -0.8240 -0.6033 -0.1024 -0.2381 1.1016 -0.6324 0.4547

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1