metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_13_0
metrics:
- wer
model-index:
- name: whisper-large-v2-spanish
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_13_0
type: common_voice_13_0
config: es
split: test
args: es
metrics:
- name: Wer
type: wer
value: 0.09930265529872913
whisper-large-v2-spanish
This model is a fine-tuned version of openai/whisper-large-v2 on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2414
- Wer Ortho: 0.1439
- Wer: 0.0993
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
---|---|---|---|---|---|
0.2074 | 1.0 | 1752 | 0.2511 | 0.1628 | 0.1211 |
0.1323 | 2.0 | 3504 | 0.2414 | 0.1439 | 0.0993 |
Framework versions
- Transformers 4.30.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3