Fine_Tuned_XLSR_English

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the timit_asr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4033
  • Wer: 0.3163

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.3757 1.0 500 3.1570 1.0
2.4891 2.01 1000 0.9252 0.8430
0.8725 3.01 1500 0.4581 0.4931
0.544 4.02 2000 0.3757 0.4328
0.4043 5.02 2500 0.3621 0.4087
0.3376 6.02 3000 0.3682 0.3931
0.2937 7.03 3500 0.3541 0.3743
0.2573 8.03 4000 0.3565 0.3593
0.2257 9.04 4500 0.3634 0.3654
0.215 10.04 5000 0.3695 0.3537
0.1879 11.04 5500 0.3690 0.3486
0.1599 12.05 6000 0.3743 0.3490
0.1499 13.05 6500 0.4108 0.3424
0.147 14.06 7000 0.4048 0.3400
0.1355 15.06 7500 0.3988 0.3357
0.1278 16.06 8000 0.3672 0.3384
0.1189 17.07 8500 0.4011 0.3340
0.1089 18.07 9000 0.3948 0.3300
0.1039 19.08 9500 0.4062 0.3317
0.0971 20.08 10000 0.4041 0.3252
0.0902 21.08 10500 0.4112 0.3301
0.0883 22.09 11000 0.4154 0.3292
0.0864 23.09 11500 0.3746 0.3189
0.0746 24.1 12000 0.3991 0.3230
0.0711 25.1 12500 0.3916 0.3200
0.0712 26.1 13000 0.4024 0.3193
0.0663 27.11 13500 0.3976 0.3184
0.0626 28.11 14000 0.4046 0.3168
0.0641 29.12 14500 0.4033 0.3163

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.12.1+cu113
  • Datasets 1.18.3
  • Tokenizers 0.12.1
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.