Edit model card

segformer-b0-finetuned-suim

This model is a fine-tuned version of nvidia/mit-b0 on the SatwikKambham/suim dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5044
  • Mean Iou: 0.6138
  • Mean Accuracy: 0.7713
  • Overall Accuracy: 0.8213
  • Accuracy Background (waterbody): nan
  • Accuracy Human divers: 0.9139
  • Accuracy Aquatic plants and sea-grass: 0.2842
  • Accuracy Wrecks and ruins: 0.8156
  • Accuracy Robots (auvs/rovs/instruments): 0.8117
  • Accuracy Reefs and invertebrates: 0.9098
  • Accuracy Fish and vertebrates: 0.8540
  • Accuracy Sea-floor and rocks: 0.8096
  • Iou Background (waterbody): 0.0
  • Iou Human divers: 0.8428
  • Iou Aquatic plants and sea-grass: 0.2638
  • Iou Wrecks and ruins: 0.7560
  • Iou Robots (auvs/rovs/instruments): 0.7896
  • Iou Reefs and invertebrates: 0.7482
  • Iou Fish and vertebrates: 0.7927
  • Iou Sea-floor and rocks: 0.7176

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background (waterbody) Accuracy Human divers Accuracy Aquatic plants and sea-grass Accuracy Wrecks and ruins Accuracy Robots (auvs/rovs/instruments) Accuracy Reefs and invertebrates Accuracy Fish and vertebrates Accuracy Sea-floor and rocks Iou Background (waterbody) Iou Human divers Iou Aquatic plants and sea-grass Iou Wrecks and ruins Iou Robots (auvs/rovs/instruments) Iou Reefs and invertebrates Iou Fish and vertebrates Iou Sea-floor and rocks
1.1911 0.54 100 0.9270 0.3052 0.4434 0.6401 nan 0.2785 0.0 0.6857 0.0 0.7643 0.7044 0.6709 0.0 0.2555 0.0 0.4605 0.0 0.6111 0.5394 0.5753
0.6852 1.08 200 0.7299 0.3457 0.4967 0.7065 nan 0.3429 0.0 0.8033 0.0 0.7829 0.7653 0.7826 0.0 0.3126 0.0 0.5458 0.0 0.6336 0.5961 0.6776
0.854 1.61 300 0.7453 0.3420 0.4937 0.6506 nan 0.5488 0.0 0.7778 0.0 0.6528 0.7659 0.7103 0.0 0.4867 0.0 0.5156 0.0 0.5619 0.6180 0.5536
0.5111 2.15 400 0.6174 0.3920 0.5455 0.7207 nan 0.7475 0.0 0.6988 0.0 0.8364 0.7907 0.7449 0.0 0.5704 0.0 0.5986 0.0 0.6422 0.6796 0.6451
0.5311 2.69 500 0.5811 0.4084 0.5606 0.7368 nan 0.7697 0.0 0.7729 0.0 0.8658 0.7824 0.7333 0.0 0.6522 0.0 0.6000 0.0 0.6551 0.7045 0.6555
0.5595 3.23 600 0.5591 0.4165 0.5686 0.7420 nan 0.8291 0.0 0.7557 0.0 0.8848 0.7805 0.7299 0.0 0.6524 0.0 0.6536 0.0 0.6760 0.7011 0.6489
0.6847 3.76 700 0.5657 0.4068 0.5740 0.7336 nan 0.8233 0.0 0.8490 0.0 0.8649 0.8157 0.6648 0.0 0.6575 0.0 0.5982 0.0 0.6532 0.7179 0.6277
0.3272 4.3 800 0.5065 0.4309 0.5838 0.7573 nan 0.7906 0.0 0.8117 0.0467 0.8729 0.8021 0.7629 0.0 0.6564 0.0 0.6608 0.0467 0.6666 0.7242 0.6925
0.5065 4.84 900 0.4745 0.4420 0.5978 0.7675 nan 0.7969 0.0000 0.8235 0.0879 0.8301 0.8187 0.8273 0.0 0.6668 0.0000 0.6834 0.0879 0.6847 0.7247 0.6882
0.3712 5.38 1000 0.4567 0.4691 0.6296 0.7824 nan 0.8468 0.0004 0.7933 0.2299 0.9005 0.8431 0.7929 0.0 0.6829 0.0004 0.7036 0.2298 0.6852 0.7381 0.7125
0.6866 5.91 1100 0.4453 0.5352 0.6932 0.7843 nan 0.8487 0.0236 0.8462 0.6450 0.8373 0.8198 0.8317 0.0 0.7810 0.0227 0.7122 0.6437 0.6768 0.7454 0.7001
0.4374 6.45 1200 0.4806 0.5279 0.6836 0.7705 nan 0.8392 0.1452 0.7508 0.5700 0.8615 0.8452 0.7732 0.0 0.7349 0.1403 0.6883 0.5638 0.6990 0.7439 0.6532
0.5409 6.99 1300 0.4671 0.5403 0.6987 0.7768 nan 0.8636 0.0181 0.7956 0.7149 0.8739 0.8502 0.7746 0.0 0.7666 0.0179 0.7256 0.7072 0.6748 0.7473 0.6834
0.3526 7.53 1400 0.4691 0.5517 0.7168 0.7811 nan 0.8670 0.2005 0.8345 0.6704 0.8837 0.8260 0.7353 0.0 0.7791 0.1891 0.6723 0.6687 0.6845 0.7447 0.6752
0.2883 8.06 1500 0.4418 0.5744 0.7341 0.8013 nan 0.8526 0.2870 0.7820 0.6996 0.8971 0.8211 0.7993 0.0 0.7654 0.2764 0.7106 0.6901 0.6891 0.7557 0.7081
0.645 8.6 1600 0.4597 0.5730 0.7375 0.7945 nan 0.8874 0.1758 0.8621 0.7514 0.8888 0.8442 0.7530 0.0 0.8018 0.1683 0.7251 0.7413 0.7048 0.7556 0.6869
0.2953 9.14 1700 0.4279 0.5967 0.7596 0.8068 nan 0.8210 0.4181 0.8465 0.7328 0.8293 0.8410 0.8285 0.0 0.7607 0.3735 0.7601 0.7259 0.7098 0.7495 0.6944
0.3441 9.68 1800 0.4727 0.5662 0.7387 0.7701 nan 0.8660 0.2776 0.8603 0.7675 0.6688 0.8444 0.8867 0.0 0.7965 0.2577 0.7043 0.7602 0.6180 0.7374 0.6556
0.4354 10.22 1900 0.4499 0.5868 0.7466 0.8000 nan 0.7931 0.3488 0.8160 0.7521 0.8689 0.8599 0.7876 0.0 0.7399 0.3263 0.7469 0.7342 0.7090 0.7542 0.6836
0.3476 10.75 2000 0.4732 0.5468 0.7053 0.7802 nan 0.8976 0.0416 0.8285 0.6882 0.8939 0.8447 0.7426 0.0 0.8055 0.0402 0.7180 0.6837 0.6855 0.7632 0.6781
0.3416 11.29 2100 0.4553 0.5745 0.7342 0.7949 nan 0.8803 0.1754 0.7792 0.7736 0.9134 0.8551 0.7625 0.0 0.8009 0.1632 0.7275 0.7484 0.6939 0.7627 0.6996
0.157 11.83 2200 0.4684 0.5814 0.7432 0.7927 nan 0.8915 0.2169 0.8390 0.7693 0.8894 0.8532 0.7434 0.0 0.8147 0.2091 0.7275 0.7518 0.7105 0.7707 0.6666
0.1665 12.37 2300 0.4369 0.6031 0.7710 0.8076 nan 0.9014 0.3852 0.8488 0.7526 0.8590 0.8721 0.7780 0.0 0.8264 0.3500 0.7249 0.7403 0.7166 0.7678 0.6990
0.3426 12.9 2400 0.4458 0.5814 0.7495 0.7925 nan 0.8842 0.2608 0.8393 0.7845 0.8458 0.8491 0.7826 0.0 0.8201 0.2433 0.6979 0.7533 0.6987 0.7597 0.6779
0.2268 13.44 2500 0.4612 0.5776 0.7355 0.7929 nan 0.8722 0.1872 0.7989 0.7789 0.8675 0.8461 0.7978 0.0 0.7964 0.1755 0.7478 0.7551 0.7139 0.7654 0.6665
0.3108 13.98 2600 0.4449 0.5926 0.7490 0.8112 nan 0.8756 0.2111 0.8021 0.7897 0.8921 0.8473 0.8256 0.0 0.8106 0.2007 0.7520 0.7736 0.7287 0.7737 0.7017
0.1832 14.52 2700 0.4271 0.6254 0.7965 0.8277 nan 0.8930 0.5784 0.7930 0.7627 0.8712 0.8446 0.8323 0.0 0.8085 0.4667 0.7385 0.7489 0.7402 0.7689 0.7312
0.1784 15.05 2800 0.4531 0.5858 0.7448 0.7987 nan 0.9073 0.2227 0.7956 0.7764 0.8722 0.8323 0.8069 0.0 0.8232 0.2077 0.7337 0.7556 0.7050 0.7734 0.6880
0.2532 15.59 2900 0.4925 0.5712 0.7273 0.7948 nan 0.9059 0.0955 0.8082 0.7507 0.9018 0.8558 0.7736 0.0 0.8223 0.0914 0.7457 0.7283 0.7327 0.7813 0.6678
0.2804 16.13 3000 0.4406 0.6236 0.7967 0.8169 nan 0.9282 0.5433 0.8292 0.7638 0.8782 0.8735 0.7609 0.0 0.8340 0.4822 0.7338 0.7438 0.7286 0.7710 0.6958
0.2874 16.67 3100 0.4576 0.5876 0.7474 0.8073 nan 0.8891 0.1620 0.8209 0.7999 0.8955 0.8642 0.8001 0.0 0.8199 0.1544 0.7478 0.7678 0.7430 0.7774 0.6904
0.2731 17.2 3200 0.4212 0.6263 0.7914 0.8341 nan 0.9025 0.5544 0.7921 0.7143 0.9193 0.8514 0.8057 0.0 0.8120 0.4920 0.7327 0.6956 0.7547 0.7783 0.7447
0.1974 17.74 3300 0.4423 0.6215 0.7846 0.8138 nan 0.8722 0.4908 0.8068 0.8134 0.8748 0.8356 0.7988 0.0 0.8076 0.4451 0.7482 0.7737 0.7350 0.7671 0.6953
0.1833 18.28 3400 0.4207 0.6284 0.7944 0.8250 nan 0.8809 0.4986 0.8445 0.7943 0.8829 0.8643 0.7955 0.0 0.8206 0.4449 0.7446 0.7776 0.7421 0.7729 0.7244
0.1611 18.82 3500 0.4327 0.6085 0.7733 0.8244 nan 0.8563 0.4147 0.7980 0.7706 0.9201 0.8495 0.8041 0.0 0.7886 0.3657 0.7429 0.7326 0.7438 0.7712 0.7230
0.1339 19.35 3600 0.4795 0.5796 0.7369 0.7978 nan 0.8572 0.1929 0.7776 0.7929 0.9016 0.8480 0.7882 0.0 0.7934 0.1840 0.7334 0.7498 0.7296 0.7615 0.6848
0.1805 19.89 3700 0.4722 0.6137 0.7739 0.8134 nan 0.8924 0.3871 0.8223 0.7928 0.8949 0.8441 0.7836 0.0 0.8249 0.3603 0.7521 0.7557 0.7451 0.7728 0.6990
0.173 20.43 3800 0.4495 0.6170 0.7843 0.8230 nan 0.9220 0.3516 0.8189 0.8353 0.9090 0.8546 0.7988 0.0 0.8318 0.3314 0.7584 0.7729 0.7453 0.7761 0.7202
0.2476 20.97 3900 0.4426 0.6363 0.8007 0.8331 nan 0.9142 0.4724 0.8094 0.8448 0.9178 0.8330 0.8136 0.0 0.8485 0.4259 0.7481 0.8003 0.7454 0.7840 0.7380
0.3163 21.51 4000 0.4550 0.6337 0.8023 0.8273 nan 0.8808 0.5716 0.8209 0.8055 0.9199 0.8518 0.7655 0.0 0.8129 0.4923 0.7503 0.7815 0.7402 0.7748 0.7180
0.12 22.04 4100 0.4396 0.6142 0.7772 0.8249 nan 0.9254 0.2952 0.8118 0.8303 0.9143 0.8460 0.8174 0.0 0.8363 0.2724 0.7579 0.7875 0.7491 0.7787 0.7316
0.2351 22.58 4200 0.4622 0.6020 0.7612 0.8087 nan 0.8992 0.2520 0.8300 0.8150 0.8647 0.8478 0.8200 0.0 0.8366 0.2309 0.7655 0.7912 0.7260 0.7714 0.6945
0.106 23.12 4300 0.4570 0.6001 0.7624 0.8163 nan 0.8731 0.2566 0.7931 0.8358 0.8961 0.8514 0.8306 0.0 0.8110 0.2326 0.7431 0.7773 0.7413 0.7771 0.7182
0.2408 23.66 4400 0.4795 0.5944 0.7501 0.8138 nan 0.9040 0.1740 0.8437 0.7707 0.8980 0.8486 0.8115 0.0 0.8454 0.1631 0.7700 0.7579 0.7352 0.7742 0.7091
0.1285 24.19 4500 0.4311 0.6377 0.8055 0.8339 nan 0.9053 0.5473 0.8025 0.8113 0.9093 0.8567 0.8060 0.0 0.8279 0.4738 0.7405 0.7775 0.7588 0.7855 0.7380
0.2967 24.73 4600 0.4509 0.6273 0.7913 0.8209 nan 0.8998 0.4427 0.8456 0.8264 0.8666 0.8433 0.8146 0.0 0.8437 0.4058 0.7616 0.7873 0.7382 0.7723 0.7098
0.2716 25.27 4700 0.4708 0.6149 0.7815 0.8199 nan 0.8998 0.3343 0.8176 0.8528 0.9088 0.8668 0.7906 0.0 0.8345 0.3116 0.7546 0.7633 0.7474 0.7928 0.7152
0.2685 25.81 4800 0.4688 0.6166 0.7778 0.8135 nan 0.9177 0.3472 0.8437 0.8130 0.9059 0.8572 0.7598 0.0 0.8452 0.3205 0.7512 0.7864 0.7475 0.7879 0.6937
0.1678 26.34 4900 0.4833 0.6056 0.7701 0.8111 nan 0.9324 0.2775 0.8162 0.8232 0.8679 0.8571 0.8162 0.0 0.8521 0.2610 0.7384 0.7874 0.7107 0.7817 0.7138
0.1904 26.88 5000 0.4423 0.6367 0.8050 0.8313 nan 0.9204 0.5078 0.8254 0.8175 0.8890 0.8661 0.8091 0.0 0.8452 0.4385 0.7538 0.7841 0.7505 0.7884 0.7333
0.202 27.42 5100 0.4582 0.6143 0.7755 0.8206 nan 0.8995 0.2772 0.8510 0.8392 0.8871 0.8583 0.8159 0.0 0.8469 0.2557 0.7571 0.8076 0.7329 0.7852 0.7286
0.1242 27.96 5200 0.4692 0.6143 0.7766 0.8192 nan 0.8887 0.3377 0.8350 0.8156 0.8718 0.8649 0.8222 0.0 0.8302 0.3055 0.7600 0.7944 0.7255 0.7826 0.7164
0.1594 28.49 5300 0.4588 0.6187 0.7860 0.8190 nan 0.9347 0.3829 0.8410 0.8051 0.8479 0.8606 0.8297 0.0 0.8549 0.3390 0.7618 0.7801 0.7272 0.7862 0.7004
0.1414 29.03 5400 0.4591 0.6293 0.7923 0.8344 nan 0.9064 0.5202 0.8183 0.7327 0.9143 0.8469 0.8073 0.0 0.8323 0.4441 0.7449 0.7207 0.7524 0.7906 0.7496
0.1208 29.57 5500 0.4611 0.6370 0.8006 0.8280 nan 0.9187 0.5037 0.7983 0.8194 0.9176 0.8641 0.7823 0.0 0.8407 0.4436 0.7389 0.7951 0.7609 0.7936 0.7233
0.227 30.11 5600 0.4488 0.6304 0.7893 0.8314 nan 0.8984 0.4428 0.8197 0.7898 0.9108 0.8502 0.8135 0.0 0.8355 0.3967 0.7621 0.7707 0.7496 0.7875 0.7410
0.2627 30.65 5700 0.4513 0.6384 0.8022 0.8295 nan 0.8818 0.5132 0.8376 0.8269 0.9009 0.8641 0.7907 0.0 0.8304 0.4484 0.7652 0.8068 0.7548 0.7772 0.7245
0.1512 31.18 5800 0.4655 0.6151 0.7736 0.8222 nan 0.9195 0.3265 0.7978 0.8000 0.9074 0.8461 0.8181 0.0 0.8427 0.2993 0.7452 0.7803 0.7358 0.7824 0.7347
0.0861 31.72 5900 0.4754 0.6258 0.7850 0.8212 nan 0.9167 0.3799 0.8171 0.8288 0.9081 0.8549 0.7897 0.0 0.8467 0.3493 0.7586 0.8013 0.7459 0.7807 0.7235
0.1755 32.26 6000 0.5160 0.5938 0.7507 0.8166 nan 0.9229 0.1614 0.8288 0.7708 0.9159 0.8458 0.8096 0.0 0.8410 0.1522 0.7619 0.7540 0.7284 0.7849 0.7280
0.1556 32.8 6100 0.4894 0.6129 0.7734 0.8141 nan 0.8895 0.3034 0.8242 0.8482 0.8989 0.8603 0.7893 0.0 0.8294 0.2825 0.7532 0.8083 0.7317 0.7820 0.7158
0.0927 33.33 6200 0.4981 0.6298 0.7908 0.8216 nan 0.9017 0.4726 0.8020 0.8062 0.9026 0.8678 0.7829 0.0 0.8340 0.4196 0.7415 0.7908 0.7476 0.7910 0.7138
0.1746 33.87 6300 0.4925 0.6243 0.7844 0.8169 nan 0.9056 0.4036 0.8058 0.8331 0.8925 0.8574 0.7928 0.0 0.8421 0.3654 0.7480 0.8046 0.7419 0.7887 0.7037
0.2803 34.41 6400 0.5036 0.6192 0.7785 0.8179 nan 0.9037 0.4145 0.8096 0.7774 0.9187 0.8604 0.7655 0.0 0.8204 0.3805 0.7519 0.7603 0.7509 0.7855 0.7038
0.1777 34.95 6500 0.4886 0.6197 0.7787 0.8209 nan 0.9173 0.3337 0.8366 0.8071 0.9066 0.8615 0.7883 0.0 0.8405 0.3112 0.7654 0.7895 0.7486 0.7875 0.7149
0.1073 35.48 6600 0.4839 0.6271 0.7868 0.8245 nan 0.9297 0.3696 0.8335 0.8214 0.9102 0.8503 0.7930 0.0 0.8519 0.3424 0.7647 0.7957 0.7553 0.7908 0.7156
0.0958 36.02 6700 0.5011 0.6186 0.7744 0.8177 nan 0.9017 0.3398 0.8211 0.8092 0.8996 0.8509 0.7981 0.0 0.8383 0.3189 0.7575 0.7915 0.7508 0.7882 0.7037
0.1107 36.56 6800 0.4854 0.6291 0.7880 0.8229 nan 0.9108 0.3956 0.8209 0.8310 0.9093 0.8608 0.7876 0.0 0.8423 0.3649 0.7552 0.8064 0.7546 0.7949 0.7143
0.1541 37.1 6900 0.4965 0.6126 0.7684 0.8160 nan 0.9126 0.2968 0.7884 0.8303 0.9209 0.8291 0.8006 0.0 0.8398 0.2769 0.7381 0.8048 0.7358 0.7817 0.7240
0.445 37.63 7000 0.5060 0.6189 0.7769 0.8191 nan 0.9039 0.3292 0.8121 0.8313 0.9127 0.8582 0.7910 0.0 0.8355 0.3081 0.7533 0.8065 0.7455 0.7894 0.7132
0.2018 38.17 7100 0.5000 0.6144 0.7723 0.8270 nan 0.9077 0.2693 0.8312 0.8125 0.9103 0.8466 0.8282 0.0 0.8408 0.2498 0.7595 0.7957 0.7438 0.7901 0.7351
0.3123 38.71 7200 0.5074 0.6111 0.7691 0.8184 nan 0.9025 0.2503 0.8243 0.8337 0.8975 0.8623 0.8133 0.0 0.8378 0.2337 0.7602 0.8090 0.7412 0.7912 0.7153
0.1877 39.25 7300 0.5227 0.6147 0.7722 0.8159 nan 0.9113 0.3006 0.8216 0.8232 0.9182 0.8541 0.7766 0.0 0.8393 0.2827 0.7559 0.7979 0.7479 0.7922 0.7018
0.1139 39.78 7400 0.5134 0.6146 0.7727 0.8208 nan 0.9234 0.2839 0.8203 0.8118 0.9109 0.8565 0.8021 0.0 0.8449 0.2659 0.7558 0.7906 0.7470 0.7941 0.7181
0.2875 40.32 7500 0.4953 0.6309 0.7919 0.8246 nan 0.9165 0.4221 0.8274 0.8228 0.9026 0.8602 0.7917 0.0 0.8437 0.3822 0.7642 0.7975 0.7566 0.7930 0.7096
0.1543 40.86 7600 0.5131 0.6227 0.7814 0.8225 nan 0.9159 0.3537 0.8144 0.8157 0.9106 0.8651 0.7943 0.0 0.8452 0.3252 0.7587 0.7914 0.7537 0.7956 0.7120
0.0935 41.4 7700 0.4870 0.6333 0.7958 0.8326 nan 0.9115 0.4304 0.8214 0.8199 0.9069 0.8677 0.8127 0.0 0.8401 0.3865 0.7595 0.7926 0.7518 0.7931 0.7424
0.1449 41.94 7800 0.5064 0.6131 0.7718 0.8177 nan 0.9140 0.2785 0.8342 0.8206 0.9070 0.8563 0.7919 0.0 0.8467 0.2571 0.7621 0.7934 0.7425 0.7947 0.7085
0.196 42.47 7900 0.4914 0.6158 0.7747 0.8250 nan 0.9065 0.3182 0.8195 0.7971 0.9159 0.8592 0.8066 0.0 0.8378 0.2900 0.7554 0.7732 0.7429 0.7941 0.7334
0.0902 43.01 8000 0.5049 0.6092 0.7678 0.8156 nan 0.9207 0.2618 0.8027 0.8255 0.9075 0.8543 0.8020 0.0 0.8510 0.2407 0.7415 0.7976 0.7388 0.7934 0.7108
0.0981 43.55 8100 0.5101 0.6028 0.7602 0.8140 nan 0.9289 0.2040 0.8124 0.8145 0.9034 0.8485 0.8094 0.0 0.8519 0.1903 0.7504 0.7913 0.7421 0.7891 0.7070
0.0804 44.09 8200 0.5136 0.6187 0.7777 0.8179 nan 0.9224 0.3260 0.8225 0.8244 0.9141 0.8543 0.7800 0.0 0.8514 0.3008 0.7543 0.7957 0.7521 0.7924 0.7033
0.125 44.62 8300 0.5089 0.6182 0.7770 0.8184 nan 0.9165 0.3390 0.8121 0.8162 0.9054 0.8558 0.7939 0.0 0.8459 0.3079 0.7522 0.7915 0.7521 0.7904 0.7052
0.1567 45.16 8400 0.5128 0.6093 0.7676 0.8178 nan 0.9259 0.2550 0.8216 0.8056 0.9131 0.8573 0.7945 0.0 0.8460 0.2413 0.7548 0.7802 0.7473 0.7921 0.7124
0.1533 45.7 8500 0.5073 0.6144 0.7719 0.8183 nan 0.9250 0.3017 0.8238 0.7985 0.9106 0.8532 0.7905 0.0 0.8477 0.2807 0.7582 0.7781 0.7505 0.7924 0.7075
0.1264 46.24 8600 0.5117 0.6175 0.7771 0.8281 nan 0.9186 0.3045 0.8219 0.8005 0.9130 0.8633 0.8178 0.0 0.8426 0.2823 0.7565 0.7777 0.7496 0.7957 0.7358
0.196 46.77 8700 0.5079 0.6199 0.7785 0.8230 nan 0.9060 0.3527 0.8219 0.8023 0.9128 0.8590 0.7949 0.0 0.8362 0.3234 0.7564 0.7803 0.7515 0.7915 0.7200
0.1576 47.31 8800 0.5046 0.6192 0.7778 0.8236 nan 0.9132 0.3347 0.8159 0.8091 0.9072 0.8549 0.8096 0.0 0.8410 0.3079 0.7548 0.7871 0.7504 0.7915 0.7211
0.1362 47.85 8900 0.5086 0.6226 0.7815 0.8228 nan 0.9132 0.3548 0.8207 0.8199 0.9185 0.8555 0.7881 0.0 0.8427 0.3250 0.7574 0.7954 0.7543 0.7932 0.7124
0.1221 48.39 9000 0.5128 0.6172 0.7760 0.8201 nan 0.9197 0.3168 0.8285 0.8051 0.9096 0.8635 0.7887 0.0 0.8438 0.2946 0.7603 0.7838 0.7511 0.7937 0.7101
0.1495 48.92 9100 0.5083 0.6219 0.7808 0.8212 nan 0.9145 0.3516 0.8284 0.8180 0.9109 0.8546 0.7879 0.0 0.8451 0.3218 0.7593 0.7943 0.7525 0.7924 0.7096
0.2303 49.46 9200 0.5041 0.6165 0.7747 0.8238 nan 0.9155 0.3038 0.8206 0.8039 0.9129 0.8603 0.8058 0.0 0.8434 0.2804 0.7582 0.7845 0.7494 0.7953 0.7211
0.1028 50.0 9300 0.5044 0.6138 0.7713 0.8213 nan 0.9139 0.2842 0.8156 0.8117 0.9098 0.8540 0.8096 0.0 0.8428 0.2638 0.7560 0.7896 0.7482 0.7927 0.7176

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for SatwikKambham/segformer-b0-finetuned-suim

Base model

nvidia/mit-b0
Finetuned
(317)
this model

Space using SatwikKambham/segformer-b0-finetuned-suim 1