ZifanScale commited on
Commit
6661ab7
1 Parent(s): 1f29845

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -84
README.md CHANGED
@@ -1,84 +1,84 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- task_categories:
4
- - text-generation
5
- language:
6
- - en
7
- tags:
8
- - adversarial robustness
9
- - human red teaming
10
- ---
11
-
12
- <style>
13
- button {
14
- /* margin: calc(20vw / 100); */
15
- margin: 0.5em;
16
- padding-left: calc(40vw / 100);
17
- padding-right: calc(40vw / 100);
18
- padding-bottom: calc(0vw / 100);
19
- text-align: center;
20
- font-size: 12px;
21
- height: 25px;
22
- transition: 0.5s;
23
- background-size: 200% auto;
24
- color: white;
25
- border-radius: calc(60vw / 100);
26
- display: inline;
27
- /* border: 2px solid black; */
28
- font-weight: 500;
29
- box-shadow: 0px 0px 14px -7px #f09819;
30
- background-image: linear-gradient(45deg, #64F 0%, #000000 51%, #FF512F 100%);
31
- cursor: pointer;
32
- user-select: none;
33
- -webkit-user-select: none;
34
- touch-action: manipulation;
35
- }
36
- button:hover {
37
- background-position: right center;
38
- color: #fff;
39
- text-decoration: none;
40
- }
41
- button:active {
42
- transform: scale(0.95);
43
- }
44
- </style>
45
-
46
- # Model Card for Llama3-8B-RMU
47
-
48
- <a href="https://scale.com/research/mhj" style="text-decoration:none">
49
- <button>Homepage</button>
50
- </a>
51
- <a href="https://huggingface.co/datasets/ScaleAI/mhj" style="text-decoration:none">
52
- <button>Dataset</button>
53
- </a>
54
-
55
- This card contains the RMU model `Llama3-8B-RMU` used in *LLM Defenses Are Not Robust to Multi-Turn Human Jailbreaks*.
56
-
57
- ## Paper Abstract
58
-
59
- Recent large language model (LLM) defenses have greatly improved models’ ability to refuse harmful
60
- queries, even when adversarially attacked. However, LLM defenses are primarily evaluated against
61
- automated adversarial attacks in a single turn of conversation, an insufficient threat model for real-
62
- world malicious use. We demonstrate that multi-turn human jailbreaks uncover significant vulnerabilities,
63
- exceeding 70% attack success rate (ASR) on HarmBench against defenses that report single-digit ASRs
64
- with automated single-turn attacks. Human jailbreaks also reveal vulnerabilities in machine unlearning
65
- defenses, successfully recovering dual-use biosecurity knowledge from unlearned models. We compile
66
- these results into Multi-Turn Human Jailbreaks (MHJ), a dataset of 2,912 prompts across 537 multi-turn
67
- jailbreaks. We publicly release MHJ alongside a compendium of jailbreak tactics developed across dozens
68
- of commercial red teaming engagements, supporting research towards stronger LLM defenses.
69
-
70
- ## RMU (Representation Misdirection for Unlearning) Model
71
-
72
- For the [WMDP-Bio](https://www.wmdp.ai/) evaluation, we employ the RMU unlearning method. The original
73
- paper applies [RMU](https://arxiv.org/abs/2403.03218) upon the zephyr-7b-beta model, but to standardize defenses and use a more
74
- performant model, we apply RMU upon llama-3-8b-instruct, the same base model as all other defenses
75
- in this paper. We conduct a hyperparameter search upon batches {200, 400}, c {5, 20, 50, 200},
76
- α ∈ {200, 500, 2000, 5000}, lr ∈ {2 × 10−5, 5 × 10−5, 2 × 10−4}. We end up selecting batches = 400,
77
- c = 50, α = 5000, lr = 2 × 10−4, and retain the hyperparameters layer_ids = [5, 6, 7] and param_ids
78
- = [6] from [Li et al.]((https://arxiv.org/abs/2403.03218)) We validate our results in Figure 8, demonstrating reduction in WMDP
79
- performance but retention of general capabilities (MMLU)
80
-
81
- The following picture shows LLaMA-3-8B-instruct multiple choice benchmark accuracies before and after RMU.
82
-
83
- ![](rmu_result.png)
84
-
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ task_categories:
4
+ - text-generation
5
+ language:
6
+ - en
7
+ tags:
8
+ - adversarial robustness
9
+ - human red teaming
10
+ base_model: meta-llama/Meta-Llama-3-8B-Instruct
11
+ ---
12
+
13
+ <style>
14
+ button {
15
+ /* margin: calc(20vw / 100); */
16
+ margin: 0.5em;
17
+ padding-left: calc(40vw / 100);
18
+ padding-right: calc(40vw / 100);
19
+ padding-bottom: calc(0vw / 100);
20
+ text-align: center;
21
+ font-size: 12px;
22
+ height: 25px;
23
+ transition: 0.5s;
24
+ background-size: 200% auto;
25
+ color: white;
26
+ border-radius: calc(60vw / 100);
27
+ display: inline;
28
+ /* border: 2px solid black; */
29
+ font-weight: 500;
30
+ box-shadow: 0px 0px 14px -7px #f09819;
31
+ background-image: linear-gradient(45deg, #64F 0%, #000000 51%, #FF512F 100%);
32
+ cursor: pointer;
33
+ user-select: none;
34
+ -webkit-user-select: none;
35
+ touch-action: manipulation;
36
+ }
37
+ button:hover {
38
+ background-position: right center;
39
+ color: #fff;
40
+ text-decoration: none;
41
+ }
42
+ button:active {
43
+ transform: scale(0.95);
44
+ }
45
+ </style>
46
+
47
+ # Model Card for Llama3-8B-RMU
48
+
49
+ <a href="https://scale.com/research/mhj" style="text-decoration:none">
50
+ <button>Homepage</button>
51
+ </a>
52
+ <a href="https://huggingface.co/datasets/ScaleAI/mhj" style="text-decoration:none">
53
+ <button>Dataset</button>
54
+ </a>
55
+
56
+ This card contains the RMU model `Llama3-8B-RMU` used in *LLM Defenses Are Not Robust to Multi-Turn Human Jailbreaks*.
57
+
58
+ ## Paper Abstract
59
+
60
+ Recent large language model (LLM) defenses have greatly improved models’ ability to refuse harmful
61
+ queries, even when adversarially attacked. However, LLM defenses are primarily evaluated against
62
+ automated adversarial attacks in a single turn of conversation, an insufficient threat model for real-
63
+ world malicious use. We demonstrate that multi-turn human jailbreaks uncover significant vulnerabilities,
64
+ exceeding 70% attack success rate (ASR) on HarmBench against defenses that report single-digit ASRs
65
+ with automated single-turn attacks. Human jailbreaks also reveal vulnerabilities in machine unlearning
66
+ defenses, successfully recovering dual-use biosecurity knowledge from unlearned models. We compile
67
+ these results into Multi-Turn Human Jailbreaks (MHJ), a dataset of 2,912 prompts across 537 multi-turn
68
+ jailbreaks. We publicly release MHJ alongside a compendium of jailbreak tactics developed across dozens
69
+ of commercial red teaming engagements, supporting research towards stronger LLM defenses.
70
+
71
+ ## RMU (Representation Misdirection for Unlearning) Model
72
+
73
+ For the [WMDP-Bio](https://www.wmdp.ai/) evaluation, we employ the RMU unlearning method. The original
74
+ paper applies [RMU](https://arxiv.org/abs/2403.03218) upon the zephyr-7b-beta model, but to standardize defenses and use a more
75
+ performant model, we apply RMU upon llama-3-8b-instruct, the same base model as all other defenses
76
+ in this paper. We conduct a hyperparameter search upon batches ∈ {200, 400}, c ∈ {5, 20, 50, 200},
77
+ α {200, 500, 2000, 5000}, lr {2 × 10−5, 5 × 10−5, 2 × 10−4}. We end up selecting batches = 400,
78
+ c = 50, α = 5000, lr = 2 × 10−4, and retain the hyperparameters layer_ids = [5, 6, 7] and param_ids
79
+ = [6] from [Li et al.]((https://arxiv.org/abs/2403.03218)) We validate our results in Figure 8, demonstrating reduction in WMDP
80
+ performance but retention of general capabilities (MMLU)
81
+
82
+ The following picture shows LLaMA-3-8B-instruct multiple choice benchmark accuracies before and after RMU.
83
+
84
+ ![](rmu_result.png)