whisper-tiny-id / README.md
Scrya's picture
Update metadata with huggingface_hub
42c2c32
metadata
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: Whisper Tiny ID - FLEURS-CV
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
          config: id_id
          split: test
        metrics:
          - type: wer
            value: 30.8
            name: WER
          - type: cer
            value: 11.29
            name: CER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0
          type: mozilla-foundation/common_voice_11_0
          config: id
          split: test
        metrics:
          - type: wer
            value: 32.49
            name: WER
          - type: cer
            value: 12.25
            name: CER

Whisper Tiny ID - FLEURS-CV

This model is a fine-tuned version of openai/whisper-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5129
  • Wer: 31.1298

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.617 1.43 500 0.5956 40.1521
0.4062 2.86 1000 0.4991 33.2066
0.2467 4.29 1500 0.4755 31.6802
0.1904 5.71 2000 0.4681 30.5907
0.118 7.14 2500 0.4776 30.9368
0.0941 8.57 3000 0.4831 30.7297
0.0771 10.0 3500 0.4912 31.1014
0.0536 11.43 4000 0.5043 31.2319
0.0502 12.86 4500 0.5113 31.2404
0.0418 14.29 5000 0.5129 31.1298

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2