AnglE📐: Angle-optimized Text Embeddings

It is Angle 📐, not Angel 👼.

🔥 A New SOTA Model for Semantic Textual Similarity!

Github: https://github.com/SeanLee97/AnglE

https://arxiv.org/abs/2309.12871

PWC PWC PWC PWC PWC PWC PWC

STS Results

Model ATEC BQ LCQMC PAWSX STS-B SOHU-dd SOHU-dc Avg.
^shibing624/text2vec-bge-large-chinese 38.41 61.34 71.72 35.15 76.44 71.81 63.15 59.72
^shibing624/text2vec-base-chinese-paraphrase 44.89 63.58 74.24 40.90 78.93 76.70 63.30 63.08
SeanLee97/angle-roberta-wwm-base-zhnli-v1 49.49 72.47 78.33 59.13 77.14 72.36 60.53 67.06
SeanLee97/angle-llama-7b-zhnli-v1 50.44 71.95 78.90 56.57 81.11 68.11 52.02 65.59

^ denotes baselines, their results are retrieved from: https://github.com/shibing624/text2vec

Usage

from angle_emb import AnglE

angle = AnglE.from_pretrained('SeanLee97/angle-roberta-wwm-base-zhnli-v1', pooling_strategy='cls').cuda()
vec = angle.encode('你好世界', to_numpy=True)
print(vec)
vecs = angle.encode(['你好世界1', '你好世界2'], to_numpy=True)
print(vecs)

Citation

You are welcome to use our code and pre-trained models. If you use our code and pre-trained models, please support us by citing our work as follows:

@article{li2023angle,
  title={AnglE-Optimized Text Embeddings},
  author={Li, Xianming and Li, Jing},
  journal={arXiv preprint arXiv:2309.12871},
  year={2023}
}
Downloads last month
5
Safetensors
Model size
102M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train SeanLee97/angle-roberta-wwm-base-zhnli-v1