Edit model card

Converted from meta-llama/Llama-3.2-11B-Vision-Instruct using BitsAndBytes with NF4 (4-bit) quantization. Not using double quantization. Requires bitsandbytes to load.

Example usage for image captioning:

from transformers import MllamaForConditionalGeneration, AutoProcessor, BitsAndBytesConfig
from PIL import Image
import time

# Load model
model_id = "SeanScripts/Llama-3.2-11B-Vision-Instruct-nf4"
model = MllamaForConditionalGeneration.from_pretrained(
    model_id,
    use_safetensors=True,
    device_map="cuda:0"
)
# Load tokenizer
processor = AutoProcessor.from_pretrained(model_id)

# Caption a local image (could use a more specific prompt)
IMAGE = Image.open("test.png").convert("RGB")
PROMPT = """<|begin_of_text|><|start_header_id|>user<|end_header_id|>
Caption this image:
<|image|><|eot_id|><|start_header_id|>assistant<|end_header_id|>
"""

inputs = processor(IMAGE, PROMPT, return_tensors="pt").to(model.device)
prompt_tokens = len(inputs['input_ids'][0])
print(f"Prompt tokens: {prompt_tokens}")

t0 = time.time()
generate_ids = model.generate(**inputs, max_new_tokens=256)
t1 = time.time()
total_time = t1 - t0
generated_tokens = len(generate_ids[0]) - prompt_tokens
time_per_token = generated_tokens/total_time
print(f"Generated {generated_tokens} tokens in {total_time:.3f} s ({time_per_token:.3f} tok/s)")

output = processor.decode(generate_ids[0][prompt_tokens:]).replace('<|eot_id|>', '')
print(output)

You can get a set of ComfyUI custom nodes for running this model here: https://github.com/SeanScripts/ComfyUI-PixtralLlamaVision

Downloads last month
6,861
Safetensors
Model size
6.05B params
Tensor type
F32
FP16
U8
Inference Examples
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for SeanScripts/Llama-3.2-11B-Vision-Instruct-nf4

Quantized
(6)
this model