metadata
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
datasets:
- cord-layoutlmv3
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-cord_100
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: cord-layoutlmv3
type: cord-layoutlmv3
config: cord
split: train
args: cord
metrics:
- name: Precision
type: precision
value: 0.9385640266469282
- name: Recall
type: recall
value: 0.9491017964071856
- name: F1
type: f1
value: 0.9438034983252697
- name: Accuracy
type: accuracy
value: 0.9516129032258065
layoutlmv3-finetuned-cord_100
This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2144
- Precision: 0.9386
- Recall: 0.9491
- F1: 0.9438
- Accuracy: 0.9516
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.56 | 250 | 1.0830 | 0.6854 | 0.7582 | 0.7200 | 0.7725 |
1.4266 | 3.12 | 500 | 0.5944 | 0.8379 | 0.8630 | 0.8503 | 0.8680 |
1.4266 | 4.69 | 750 | 0.3868 | 0.8828 | 0.9079 | 0.8952 | 0.9155 |
0.4084 | 6.25 | 1000 | 0.3146 | 0.9133 | 0.9304 | 0.9218 | 0.9338 |
0.4084 | 7.81 | 1250 | 0.2658 | 0.9240 | 0.9371 | 0.9305 | 0.9419 |
0.2139 | 9.38 | 1500 | 0.2432 | 0.9299 | 0.9439 | 0.9368 | 0.9474 |
0.2139 | 10.94 | 1750 | 0.2333 | 0.9291 | 0.9416 | 0.9353 | 0.9482 |
0.1478 | 12.5 | 2000 | 0.2098 | 0.9358 | 0.9491 | 0.9424 | 0.9529 |
0.1478 | 14.06 | 2250 | 0.2134 | 0.9379 | 0.9491 | 0.9435 | 0.9516 |
0.1124 | 15.62 | 2500 | 0.2144 | 0.9386 | 0.9491 | 0.9438 | 0.9516 |
Framework versions
- Transformers 4.22.1
- Pytorch 1.12.1+cu113
- Datasets 2.5.1
- Tokenizers 0.12.1