Sebabrata's picture
update model card README.md
ff27899
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
model-index:
  - name: lmv2-g-paystb-999-doc-09-11
    results: []

lmv2-g-paystb-999-doc-09-11

This model is a fine-tuned version of microsoft/layoutlmv2-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1207
  • Employee Address Precision: 0.8152
  • Employee Address Recall: 0.8523
  • Employee Address F1: 0.8333
  • Employee Address Number: 88
  • Employee Name Precision: 0.9511
  • Employee Name Recall: 0.9722
  • Employee Name F1: 0.9615
  • Employee Name Number: 180
  • Employer Address Precision: 0.8151
  • Employer Address Recall: 0.8509
  • Employer Address F1: 0.8326
  • Employer Address Number: 114
  • Employer Name Precision: 0.8564
  • Employer Name Recall: 0.8857
  • Employer Name F1: 0.8708
  • Employer Name Number: 175
  • Gross Pay Precision: 0.8976
  • Gross Pay Recall: 0.8324
  • Gross Pay F1: 0.8638
  • Gross Pay Number: 179
  • Net Pay Precision: 0.8994
  • Net Pay Recall: 0.8846
  • Net Pay F1: 0.8920
  • Net Pay Number: 182
  • Pay Date Precision: 0.9107
  • Pay Date Recall: 0.8718
  • Pay Date F1: 0.8908
  • Pay Date Number: 117
  • Ssn Number Precision: 0.9032
  • Ssn Number Recall: 0.9032
  • Ssn Number F1: 0.9032
  • Ssn Number Number: 31
  • Overall Precision: 0.8853
  • Overall Recall: 0.8837
  • Overall F1: 0.8845
  • Overall Accuracy: 0.9834

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Employee Address Precision Employee Address Recall Employee Address F1 Employee Address Number Employee Name Precision Employee Name Recall Employee Name F1 Employee Name Number Employer Address Precision Employer Address Recall Employer Address F1 Employer Address Number Employer Name Precision Employer Name Recall Employer Name F1 Employer Name Number Gross Pay Precision Gross Pay Recall Gross Pay F1 Gross Pay Number Net Pay Precision Net Pay Recall Net Pay F1 Net Pay Number Pay Date Precision Pay Date Recall Pay Date F1 Pay Date Number Ssn Number Precision Ssn Number Recall Ssn Number F1 Ssn Number Number Overall Precision Overall Recall Overall F1 Overall Accuracy
0.8872 1.0 799 0.3053 0.0 0.0 0.0 88 0.5146 0.5889 0.5492 180 0.4213 0.7281 0.5338 114 0.6468 0.7429 0.6915 175 0.0 0.0 0.0 179 0.4143 0.4780 0.4439 182 0.0 0.0 0.0 117 0.8148 0.7097 0.7586 31 0.5089 0.4015 0.4489 0.9454
0.2088 2.0 1598 0.1402 0.7527 0.7955 0.7735 88 0.9270 0.9167 0.9218 180 0.7209 0.8158 0.7654 114 0.7949 0.8857 0.8378 175 0.8425 0.6872 0.7569 179 0.8079 0.7857 0.7967 182 0.7068 0.8034 0.752 117 0.8889 0.7742 0.8276 31 0.8043 0.8133 0.8088 0.9769
0.1044 3.0 2397 0.1181 0.6881 0.8523 0.7614 88 0.9227 0.9278 0.9252 180 0.7323 0.8158 0.7718 114 0.8297 0.8629 0.8459 175 0.8402 0.7933 0.8161 179 0.8132 0.8132 0.8132 182 0.8509 0.8291 0.8398 117 0.8333 0.8065 0.8197 31 0.8208 0.8424 0.8315 0.9780
0.0659 4.0 3196 0.1117 0.8105 0.875 0.8415 88 0.9101 0.9556 0.9322 180 0.784 0.8596 0.8201 114 0.8032 0.8629 0.8320 175 0.8247 0.8939 0.8579 179 0.7885 0.9011 0.8410 182 0.8120 0.9231 0.864 117 0.8966 0.8387 0.8667 31 0.8234 0.8968 0.8586 0.9791
0.0505 5.0 3995 0.0975 0.8636 0.8636 0.8636 88 0.9309 0.9722 0.9511 180 0.8115 0.8684 0.8390 114 0.8516 0.8857 0.8683 175 0.8772 0.8380 0.8571 179 0.8914 0.8571 0.8739 182 0.8333 0.9402 0.8835 117 0.8929 0.8065 0.8475 31 0.8711 0.8874 0.8792 0.9826
0.0407 6.0 4794 0.1120 0.7660 0.8182 0.7912 88 0.9301 0.9611 0.9454 180 0.7344 0.8246 0.7769 114 0.8245 0.8857 0.8540 175 0.8352 0.8492 0.8421 179 0.8261 0.8352 0.8306 182 0.8333 0.9402 0.8835 117 0.8788 0.9355 0.9062 31 0.8314 0.8790 0.8545 0.9794
0.032 7.0 5593 0.1585 0.7526 0.8295 0.7892 88 0.9454 0.9611 0.9532 180 0.8120 0.8333 0.8225 114 0.8457 0.8457 0.8457 175 0.8084 0.7542 0.7803 179 0.8426 0.5 0.6276 182 0.8271 0.9402 0.8800 117 0.8710 0.8710 0.8710 31 0.8427 0.7992 0.8204 0.9774
0.0298 8.0 6392 0.1335 0.7822 0.8977 0.8360 88 0.9344 0.95 0.9421 180 0.68 0.8947 0.7727 114 0.7536 0.8914 0.8168 175 0.8478 0.8715 0.8595 179 0.8876 0.8242 0.8547 182 0.8095 0.8718 0.8395 117 0.9 0.8710 0.8852 31 0.82 0.8846 0.8511 0.9765
0.0231 9.0 7191 0.1189 0.8315 0.8409 0.8362 88 0.9396 0.95 0.9448 180 0.7672 0.7807 0.7739 114 0.7989 0.84 0.8189 175 0.8508 0.8603 0.8556 179 0.8659 0.8516 0.8587 182 0.9217 0.9060 0.9138 117 0.9 0.8710 0.8852 31 0.8578 0.8659 0.8618 0.9814
0.0216 10.0 7990 0.1207 0.8152 0.8523 0.8333 88 0.9511 0.9722 0.9615 180 0.8151 0.8509 0.8326 114 0.8564 0.8857 0.8708 175 0.8976 0.8324 0.8638 179 0.8994 0.8846 0.8920 182 0.9107 0.8718 0.8908 117 0.9032 0.9032 0.9032 31 0.8853 0.8837 0.8845 0.9834
0.0229 11.0 8789 0.1297 0.8242 0.8523 0.8380 88 0.9663 0.9556 0.9609 180 0.8197 0.8772 0.8475 114 0.8772 0.8571 0.8671 175 0.8539 0.8492 0.8515 179 0.8817 0.8187 0.8490 182 0.9126 0.8034 0.8545 117 0.8056 0.9355 0.8657 31 0.8788 0.8640 0.8713 0.9816
0.0221 12.0 9588 0.1326 0.8462 0.875 0.8603 88 0.9318 0.9111 0.9213 180 0.7338 0.8947 0.8063 114 0.7487 0.8514 0.7968 175 0.8757 0.8659 0.8708 179 0.8871 0.9066 0.8967 182 0.8651 0.9316 0.8971 117 0.7436 0.9355 0.8286 31 0.8385 0.8912 0.8640 0.9810
0.0179 13.0 10387 0.1413 0.8085 0.8636 0.8352 88 0.9553 0.95 0.9526 180 0.8065 0.8772 0.8403 114 0.8098 0.8514 0.8301 175 0.8659 0.8659 0.8659 179 0.8729 0.8681 0.8705 182 0.8934 0.9316 0.9121 117 0.9333 0.9032 0.9180 31 0.8655 0.8874 0.8763 0.9825
0.0143 14.0 11186 0.1267 0.8315 0.8409 0.8362 88 0.9454 0.9611 0.9532 180 0.7372 0.8860 0.8048 114 0.8054 0.8514 0.8278 175 0.8043 0.8268 0.8154 179 0.7861 0.8681 0.8251 182 0.8889 0.8889 0.8889 117 0.8571 0.9677 0.9091 31 0.8285 0.8790 0.8530 0.9810
0.0139 15.0 11985 0.1592 0.7449 0.8295 0.7849 88 0.9355 0.9667 0.9508 180 0.8319 0.8246 0.8282 114 0.8125 0.8171 0.8148 175 0.8708 0.8659 0.8683 179 0.8944 0.8846 0.8895 182 0.9027 0.8718 0.8870 117 0.8788 0.9355 0.9062 31 0.8644 0.8734 0.8689 0.9807
0.0163 16.0 12784 0.1449 0.6496 0.8636 0.7415 88 0.8687 0.9556 0.9101 180 0.8448 0.8596 0.8522 114 0.7935 0.8343 0.8134 175 0.8168 0.8715 0.8432 179 0.8557 0.9121 0.8830 182 0.8413 0.9060 0.8724 117 0.8788 0.9355 0.9062 31 0.8188 0.8902 0.8530 0.9792
0.013 17.0 13583 0.1449 0.7353 0.8523 0.7895 88 0.9422 0.9056 0.9235 180 0.808 0.8860 0.8452 114 0.8207 0.8629 0.8412 175 0.8531 0.8436 0.8483 179 0.9416 0.7967 0.8631 182 0.9304 0.9145 0.9224 117 0.8571 0.9677 0.9091 31 0.8667 0.8659 0.8663 0.9805
0.0107 18.0 14382 0.1510 0.7315 0.8977 0.8061 88 0.9048 0.95 0.9268 180 0.8 0.8421 0.8205 114 0.8152 0.8571 0.8357 175 0.8844 0.8547 0.8693 179 0.8486 0.8626 0.8556 182 0.9076 0.9231 0.9153 117 0.8824 0.9677 0.9231 31 0.8489 0.8856 0.8669 0.9816
0.0108 19.0 15181 0.1424 0.7979 0.8523 0.8242 88 0.8895 0.9389 0.9135 180 0.8333 0.8772 0.8547 114 0.8075 0.8629 0.8343 175 0.8636 0.8492 0.8563 179 0.8596 0.8407 0.8500 182 0.9008 0.9316 0.9160 117 0.9032 0.9032 0.9032 31 0.8541 0.8790 0.8664 0.9829
0.0122 20.0 15980 0.1525 0.7228 0.8295 0.7725 88 0.9185 0.9389 0.9286 180 0.792 0.8684 0.8285 114 0.7513 0.8114 0.7802 175 0.8523 0.8380 0.8451 179 0.8870 0.8626 0.8747 182 0.8468 0.8974 0.8714 117 0.9655 0.9032 0.9333 31 0.8353 0.8659 0.8503 0.9813
0.0238 21.0 16779 0.1477 0.8605 0.8409 0.8506 88 0.9441 0.9389 0.9415 180 0.8279 0.8860 0.8559 114 0.8177 0.8457 0.8315 175 0.8523 0.8380 0.8451 179 0.9186 0.8681 0.8927 182 0.8417 0.8632 0.8523 117 0.8788 0.9355 0.9062 31 0.8700 0.8724 0.8712 0.9821
0.0124 22.0 17578 0.1458 0.7255 0.8409 0.7789 88 0.9435 0.9278 0.9356 180 0.7786 0.8947 0.8327 114 0.7968 0.8514 0.8232 175 0.8659 0.8659 0.8659 179 0.9029 0.8681 0.8852 182 0.8889 0.8889 0.8889 117 0.9032 0.9032 0.9032 31 0.8526 0.8790 0.8656 0.9819
0.0116 23.0 18377 0.1504 0.7895 0.8523 0.8197 88 0.9399 0.9556 0.9477 180 0.8065 0.8772 0.8403 114 0.7525 0.8686 0.8064 175 0.8655 0.8268 0.8457 179 0.8441 0.8626 0.8533 182 0.8 0.9231 0.8571 117 0.8333 0.9677 0.8955 31 0.8322 0.8837 0.8571 0.9803
0.0093 24.0 19176 0.1616 0.75 0.75 0.75 88 0.8978 0.9278 0.9126 180 0.8393 0.8246 0.8319 114 0.8261 0.8686 0.8468 175 0.8844 0.8547 0.8693 179 0.8757 0.8516 0.8635 182 0.8992 0.9145 0.9068 117 0.9062 0.9355 0.9206 31 0.8618 0.8659 0.8638 0.9804
0.0104 25.0 19975 0.1614 0.8182 0.8182 0.8182 88 0.9101 0.9556 0.9322 180 0.8197 0.8772 0.8475 114 0.8466 0.8514 0.8490 175 0.8475 0.8380 0.8427 179 0.8833 0.8736 0.8785 182 0.8548 0.9060 0.8797 117 0.8529 0.9355 0.8923 31 0.8596 0.8790 0.8692 0.9820
0.0105 26.0 20774 0.1362 0.7978 0.8068 0.8023 88 0.9076 0.9278 0.9176 180 0.8534 0.8684 0.8609 114 0.8541 0.9029 0.8778 175 0.8254 0.8715 0.8478 179 0.8852 0.8901 0.8877 182 0.9043 0.8889 0.8966 117 0.8485 0.9032 0.875 31 0.8638 0.8865 0.875 0.9822
0.0086 27.0 21573 0.1691 0.8172 0.8636 0.8398 88 0.9385 0.9333 0.9359 180 0.7407 0.8772 0.8032 114 0.7812 0.8571 0.8174 175 0.8539 0.8492 0.8515 179 0.875 0.8846 0.8798 182 0.9076 0.9231 0.9153 117 0.625 0.9677 0.7595 31 0.8378 0.8865 0.8614 0.9791
0.0092 28.0 22372 0.1536 0.7789 0.8409 0.8087 88 0.9266 0.9111 0.9188 180 0.8487 0.8860 0.8670 114 0.8588 0.8686 0.8636 175 0.8982 0.8380 0.8671 179 0.9 0.8901 0.8950 182 0.8783 0.8632 0.8707 117 0.9375 0.9677 0.9524 31 0.8795 0.8762 0.8778 0.9826
0.0065 29.0 23171 0.1676 0.8202 0.8295 0.8249 88 0.9444 0.9444 0.9444 180 0.7951 0.8509 0.8220 114 0.7685 0.8914 0.8254 175 0.9060 0.7542 0.8232 179 0.9153 0.8901 0.9025 182 0.9 0.8462 0.8722 117 0.9091 0.9677 0.9375 31 0.8674 0.8649 0.8661 0.9812
0.0118 30.0 23970 0.1803 0.8636 0.8636 0.8636 88 0.9293 0.95 0.9396 180 0.6690 0.8509 0.7490 114 0.8261 0.8686 0.8468 175 0.8 0.8715 0.8342 179 0.8421 0.8791 0.8602 182 0.8780 0.9231 0.9 117 0.8788 0.9355 0.9062 31 0.8310 0.8902 0.8596 0.9783

Framework versions

  • Transformers 4.22.0.dev0
  • Pytorch 1.12.1+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1