ppo-LunarLander-v2 / config.json
SecondTheFirst's picture
My First Deep RL model
3d87750
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e67acdd5cf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e67acdd5d80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e67acdd5e10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e67acdd5ea0>", "_build": "<function ActorCriticPolicy._build at 0x7e67acdd5f30>", "forward": "<function ActorCriticPolicy.forward at 0x7e67acdd5fc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e67acdd6050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e67acdd60e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e67acdd6170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e67acdd6200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e67acdd6290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e67acdd6320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e67acf7d240>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702982848890094232, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI2Eib0OSvs92KvsPcsItr7tV709EMALPAAAAAAAAAAAAMiRPIVTprkjZPu7BFrDOzDCD7rzwOW7AAAAAAAAAAAA73m9ev6xPss96j02Iqy+mOTTPPlpMD0AAAAAAAAAADoQGr7z1K8+7qggP+P26b6AsYU8WG/QPgAAAAAAAAAAE984vl+Hhz+z6zK/0M0dv2O/B766Dny+AAAAAAAAAABW/8w+nXQWP+b4K77leBK/qSahPtDchr4AAAAAAAAAAMDboz2Pfgq63qlyswyQ965fj4g63qnSMwAAgD8AAIA/ZifHvTjCprtQ6mW8b4CKPJlo7bzD/Ws9AACAPwAAAAAz5dw9Sa2JPybCNT4EFyW/T3rIPablDD0AAAAAAAAAAEBEhr2aABA+rZZVPNKphr6L8RU9+HRQvQAAAAAAAAAAk+ggvlrOPD8qhAg+Hab/vi0B2b1pkys+AAAAAAAAAAAAzFQ8Y9AVPb04EL69vJW+jAlqvAY5gj0AAAAAAAAAAM22sDwFwOa7dp4DvhcuFz0e7TQ9Ul/4vQAAgD8AAIA/5oEVPYWz4rlmKYk3s+94MraxkjstxKS2AACAPwAAAABmEC29SL+yuoBmZjoraVw1XcxcuBiVg7kAAIA/AACAPxr90z24Wde7faxWvdZw4DyGYUm94kK5PQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCPI+wC8vqMAWyUS9uMAXSUR0CHuV1ZDArQdX2UKGgGR0BxVCuB+WnkaAdL3WgIR0CHudb0OEuhdX2UKGgGR0Bw+xnzxwyZaAdLyWgIR0CHutkNnXd1dX2UKGgGR0BwoDjdYW+HaAdL6mgIR0CHuuTh5xBFdX2UKGgGR0BxHs8p1A7gaAdLzWgIR0CHvCJfICEIdX2UKGgGR0Bx2AiTt9hJaAdL/2gIR0CHvEPkq+ajdX2UKGgGR0BvDh8lXzUaaAdL4WgIR0CHvJj1f3N+dX2UKGgGR0BwIrWd3B55aAdLzGgIR0CHvrkDIRywdX2UKGgGR0BwgGevpyIYaAdLyWgIR0CHvu5S3soldX2UKGgGR0BwLYBaLXMAaAdL4mgIR0CHvzmh/RVqdX2UKGgGR0ByyqkzoEB9aAdL6WgIR0CHv0YfnwG4dX2UKGgGR0BzruvhZQpGaAdL1WgIR0CHwO9FnZkDdX2UKGgGR0BwBKTGHYYjaAdL5WgIR0CHwXrdFfAsdX2UKGgGR0BwGsna37UHaAdL42gIR0CHwoBczImxdX2UKGgGR0Bxtv4fwI+oaAdL7GgIR0CHwuGgzxgBdX2UKGgGR0Bw4xX0XgtOaAdL1WgIR0CHwxBTn7pFdX2UKGgGR0Bxrsy9EkSmaAdLzGgIR0CHxDWTX8O1dX2UKGgGR0ByCGz+m3vyaAdL92gIR0CHxSfcvduYdX2UKGgGR0BvIP4fwI+oaAdL62gIR0CHxa2TgVGkdX2UKGgGR0Bvt+ViWmgraAdL3GgIR0CHxlyn1nM/dX2UKGgGR0Buf5lFtsN2aAdL3GgIR0CHxn9F4LThdX2UKGgGR0Bx3jjfek57aAdL5mgIR0CHx0+3Ytg8dX2UKGgGR0By/l1Ng0CSaAdLzmgIR0CHyJUy57PZdX2UKGgGR0Bzvr433pOfaAdL02gIR0CHyR5C4SYgdX2UKGgGR0Bw/IXTEzfraAdL1GgIR0CHyTzT4L1FdX2UKGgGR0ByRQ8yN4qxaAdL82gIR0CHyiNIbwSbdX2UKGgGR0Bz++WHDaXbaAdL1mgIR0CHywzMRpUQdX2UKGgGR0BxHx1zQu27aAdL2mgIR0CHy6rcTJyRdX2UKGgGR0Bvy8zhxYJWaAdL4GgIR0CHzPkupS75dX2UKGgGR0Bx7Q4R28qXaAdL22gIR0CHzSEjgQ6IdX2UKGgGR0BzL/WjGkvcaAdL12gIR0CHzSDWbwz+dX2UKGgGR0BxTgMTewcHaAdLymgIR0CHzafpUxVRdX2UKGgGR0BxMbdoFmnPaAdNJwJoCEdAh/m2L5ylvnV9lChoBkdAcX1XA/LTyGgHS+FoCEdAh/qBZ6lchXV9lChoBkdAc3nuyu6mO2gHS91oCEdAh/r8CYCyQnV9lChoBkdAcUnCiyprDmgHS/loCEdAh/s/2TPjXHV9lChoBkdAcukIjnmq52gHS9doCEdAh/utQbdadXV9lChoBkdAcuzgKneiz2gHS9JoCEdAh/yo55qubXV9lChoBkdAcY8jPOY6XGgHS9xoCEdAh/3G0mdAgXV9lChoBkdAcaRuhK15SmgHS+hoCEdAh/48/MW43HV9lChoBkdAcw1RIBikPGgHS+ZoCEdAh/8oDoyKvXV9lChoBkdAcIESDyvs7mgHS+BoCEdAh//RAjY7JXV9lChoBkdAcOruTibUgGgHS9xoCEdAiABFHavicXV9lChoBkdAcFauJUHY6GgHS8doCEdAiAFJOFg2InV9lChoBkdAcWMRaouPFWgHS9doCEdAiAF4wyqMnHV9lChoBkdAcm/73PAwf2gHS+1oCEdAiAJZylvZRXV9lChoBkdAc0x/cWTHKmgHTQcBaAhHQIgDyHVPN3Z1fZQoaAZHQG39Jn6Eal1oB0vcaAhHQIgEB1s+FDh1fZQoaAZHQHHr/FzdUKloB0vHaAhHQIgESpm29ct1fZQoaAZHQHOZrWVeKKpoB0vCaAhHQIgEsWdmQKd1fZQoaAZHQHHbLFGXokloB0vcaAhHQIgExIxxkup1fZQoaAZHQHJ3YbXHzYpoB0vfaAhHQIgHFfZ26kJ1fZQoaAZHQHFxzkELYwtoB00JAWgIR0CIB38BuGbkdX2UKGgGR0BWqGSt/4IsaAdLpGgIR0CIB/Jmukk9dX2UKGgGR0BveM8vEjxDaAdL32gIR0CICLMJQcghdX2UKGgGR0BwjTSmZVn3aAdL3GgIR0CICYJUHY6GdX2UKGgGR0BzOnBrN4Z/aAdL/2gIR0CICcoNNJvpdX2UKGgGR0BxBZjQRf4RaAdL6GgIR0CICsrhBJI2dX2UKGgGR0BuWWP91loUaAdL0mgIR0CIC3yOq//OdX2UKGgGR0BwR1xo7FKkaAdL/GgIR0CIDZseGO+7dX2UKGgGR0Bv0ohIOH32aAdL52gIR0CIDbWPLgXNdX2UKGgGR0ByyMNy5qdpaAdL1WgIR0CIDkjsUqQSdX2UKGgGR0BwOfZlFtsOaAdL1mgIR0CIDulwcYIjdX2UKGgGR0Bvrf1YhdMTaAdL22gIR0CIDuLZzxPPdX2UKGgGR0Bxf7PWxyGSaAdL0GgIR0CIDxQTEit8dX2UKGgGR0Bx3T0163RYaAdL22gIR0CID6oKlYU4dX2UKGgGR0BxCf8AJb+taAdLzmgIR0CIEcrNnoPkdX2UKGgGR0Bz0v+1jRUnaAdL6GgIR0CIErgVoHs1dX2UKGgGR0BxuthsqJ/HaAdLzGgIR0CIEwOearmydX2UKGgGR0BxDvrPdEb6aAdLymgIR0CIE8xHoX9BdX2UKGgGR0ByDJkwvg3taAdLxGgIR0CIFYwg1WKedX2UKGgGR0Bzjvoq0+khaAdL52gIR0CIFZ9NN8E3dX2UKGgGR0ByOI+1SflIaAdL2WgIR0CIFe89Oh0ydX2UKGgGR0ByKo/UvwmWaAdL1mgIR0CIGL8QZn+RdX2UKGgGR0BxpxzvJA+qaAdL5GgIR0CIGZMjeKsNdX2UKGgGR0ByIHjp9qk/aAdL4GgIR0CIGitsenyedX2UKGgGR0BxNrV9Wp6yaAdL12gIR0CIGpo6jnFHdX2UKGgGR0BvJ2QuEmICaAdL3GgIR0CIGq/Z/Tb4dX2UKGgGR0BxaZwo9cKPaAdL4GgIR0CIGvJaJQ+EdX2UKGgGR0BxFosVclgMaAdL2GgIR0CIG2VRk3CLdX2UKGgGR0Bu9OhRIjGDaAdNkQFoCEdAiB1Qob4rSXV9lChoBkdAcKEoA4n4PGgHS9FoCEdAiB2UQ04zanV9lChoBkdAbtl/8VHnU2gHS+ZoCEdAiB+xOUMXrXV9lChoBkdAcVRayrxRVWgHS/JoCEdAiCCcvEjxC3V9lChoBkdAcc03r2QGOmgHS9RoCEdAiCGeJpFkQXV9lChoBkdAcOtsLv1DjWgHS9JoCEdAiCGU3n6l+HV9lChoBkdAZHnn8Kohp2gHTdsDaAhHQIgiLD63y7R1fZQoaAZHQHIsOOsDGLloB00LAWgIR0CIIpp0OmSAdX2UKGgGR0Bwer+ee4CqaAdNAwFoCEdAiCQgFotcwHV9lChoBkdAcCzyhi9ZimgHS9NoCEdAiCRCvX9R8HV9lChoBkdAczhOinHeamgHS9ZoCEdAiCTrUkOZs3V9lChoBkdAcwlWLP2PDGgHS9VoCEdAiCWWgezUqnV9lChoBkdAby3BSk0rLGgHS8xoCEdAiCXARkEs8XV9lChoBkdAc225e7cwg2gHS+NoCEdAiCYg0TDfnHV9lChoBkdAceDptaY/mmgHS/5oCEdAiCb+pOvdM3V9lChoBkdAcJHuxbB42WgHS/doCEdAiCc1VghKUXV9lChoBkdAcXPKvFFUhmgHS9FoCEdAiCeRn3+MqHV9lChoBkdAcQicu8K5TmgHS9toCEdAiCfMA/9pAXV9lChoBkdAc8jFt8/lhmgHS9NoCEdAiClKGtZFHHV9lChoBkdAcyN3bVSXMWgHS8xoCEdAiCqTV2A5JnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}