metadata
tags:
- autotrain
- tabular
- regression
- tabular-regression
datasets:
- Ammok/laptop_price_prediction
Model Trained Using AutoTrain
- Problem type: Tabular regression
Validation Metrics
- r2: 0.7770511763473569
- mse: 7850730654540.005
- mae: 1734575.7588461537
- rmse: 2801915.5330844657
- rmsle: 0.23713967369435024
- loss: 2801915.5330844657
Best Params
- learning_rate: 0.02229837095040035
- reg_lambda: 2.510764141176911
- reg_alpha: 0.001531565861357925
- subsample: 0.8214234508684097
- colsample_bytree: 0.3555990037002663
- max_depth: 5
- early_stopping_rounds: 355
- n_estimators: 20000
- eval_metric: rmse
Usage
import json
import joblib
import pandas as pd
model = joblib.load('model.joblib')
config = json.load(open('config.json'))
features = config['features']
# data = pd.read_csv("data.csv")
data = data[features]
predictions = model.predict(data) # or model.predict_proba(data)
# predictions can be converted to original labels using label_encoders.pkl