|
---
|
|
license: openrail
|
|
---
|
|
# trocr-old-russian
|
|
## Info
|
|
The model is trained to recognize printed texts in Old Russian language
|
|
- Use microsoft/trocr-small-printed as base model for fine-tune.
|
|
- Fine-tune on 636k text images from dataset: https://huggingface.co/datasets/nevmenandr/russian-old-orthography-ocr
|
|
|
|
## Usage
|
|
### Base-usage
|
|
```python
|
|
from PIL import Image
|
|
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
|
|
|
hf_model = VisionEncoderDecoderModel.from_pretrained("Serovvans/trocr-prereform-orthography")
|
|
|
|
image = Image.open("./path/to/your/image")
|
|
|
|
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-printed")
|
|
pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
|
|
|
generated_ids = hf_model.generate(pixel_values)
|
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
print(generated_text)
|
|
```
|
|
## Usage for recognizing the book
|
|
```python
|
|
```
|
|
|
|
## Metrics on test
|
|
- CER (Char Error Rate) = 0.095
|
|
- WER (Word Error Rate) = 0.298 |