metadata
license: mit
datasets:
- Severian/Internal-Knowledge-Map
pipeline_tag: text-generation
This model has been trained for 2 epochs using Unsloth on the Internal Knowledge Map dataset.
==((====))== Unsloth - 2x faster free finetuning | Num GPUs = 1
\\ /| Num examples = 2,614 | Num Epochs = 2
O^O/ \_/ \ Batch size per device = 4 | Gradient Accumulation steps = 4
\ / Total batch size = 16 | Total steps = 326
"-____-" Number of trainable parameters = 83,886,080
[326/326 09:13, Epoch 1/2]
Step Training Loss
1 3.122400
2 3.146700
3 3.077300
4 3.072800
5 3.052400
6 3.032800
7 3.040000
8 3.078500
9 3.054300
10 3.031500
11 3.022800
12 3.030600
13 3.034800
14 3.023000
15 3.010300
16 3.066700
17 3.009200
18 2.950200
19 2.972900
20 2.975500
21 2.975900
22 2.933600
23 2.949500
24 3.000900
25 2.878700
26 2.950200
27 2.893500
28 2.875300
29 2.976100
30 2.869200
31 2.911700
32 2.795500
33 2.799400
34 2.849400
35 2.809000
36 2.795200
37 2.805400
38 2.787700
39 2.749900
40 2.735900
41 2.829800
42 2.774600
43 2.716500
44 2.803900
45 2.657600
46 2.701500
47 2.638200
48 2.788100
49 2.600000
50 2.599400
51 2.564500
52 2.587100
53 2.541100
54 2.541300
55 2.565700
56 2.584000
57 2.583400
58 2.622200
59 2.484100
60 2.414400
61 2.435400
62 2.417200
63 2.519300
64 2.527100
65 2.419200
66 2.393400
67 2.350400
68 2.463400
69 2.427600
70 2.287600
71 2.290400
72 2.313200
73 2.252300
74 2.275400
75 2.251900
76 2.325800
77 2.174600
78 2.158100
79 2.215200
80 2.094500
81 2.239300
82 2.163100
83 2.239600
84 2.058000
85 2.099200
86 2.063500
87 2.042700
88 1.981600
89 2.005200
90 2.009200
91 1.971600
92 1.989700
93 1.957000
94 1.871600
95 1.928000
96 1.931000
97 1.812400
98 1.867900
99 1.745100
100 1.864200
101 1.708200
102 1.903700
103 1.789400
104 1.760100
105 1.636100
106 1.826100
107 1.816700
108 1.753400
109 1.760800
110 1.720400
111 1.511300
112 1.614200
113 1.632700
114 1.480100
115 1.548600
116 1.623400
117 1.629900
118 1.435100
119 1.460700
120 1.482000
121 1.305400
122 1.231600
123 1.581200
124 1.193100
125 1.216200
126 1.293600
127 1.158300
128 1.211200
129 1.184000
130 1.116600
131 1.146400
132 1.255100
133 1.085800
134 0.993300
135 1.134800
136 1.293100
137 1.377800
138 0.779900
139 0.889400
140 0.849800
141 1.080100
142 0.969100
143 1.034000
144 0.868000
145 0.727900
146 0.688100
147 0.870200
148 0.782700
149 0.672200
150 0.690100
151 0.665900
152 0.694800
153 0.642100
154 0.435800
155 0.575800
156 0.678400
157 0.540300
158 0.550200
159 0.652300
160 0.397500
161 0.839400
162 0.480400
163 0.533200
164 0.331800
165 0.470100
166 0.485200
167 0.350000
168 0.490200
169 0.353600
170 0.445700
171 0.461700
172 0.471700
173 0.217400
174 0.795300
175 0.276600
176 0.146400
177 0.776800
178 0.262800
179 0.276800
180 0.269000
181 0.256000
182 0.580300
183 0.223600
184 0.148800
185 0.309900
186 0.931900
187 0.177100
188 0.253300
189 0.669300
190 0.535500
191 0.180600
192 0.332300
193 0.498300
194 0.249200
195 0.532900
196 0.214900
197 0.453000
198 0.321500
199 0.230500
200 0.121200
201 0.243600
202 0.341000
203 0.303100
204 0.194500
205 0.379500
206 0.212300
207 0.728000
208 0.465900
209 0.168300
210 0.325700
211 0.083800
212 0.299700
213 0.578800
214 0.080600
215 0.181000
216 0.104500
217 0.425300
218 0.378300
219 0.150900
220 0.186100
221 0.297500
222 0.447000
223 0.350500
224 0.203000
225 0.154800
226 0.195300
227 0.036700
228 0.160900
229 0.330500
230 0.574200
231 0.526900
232 0.274500
233 0.388700
234 0.212200
235 0.251600
236 0.150400
237 0.460500
238 0.107800
239 0.097400
240 0.136000
241 0.390400
242 0.279900
243 0.507000
244 0.472500
245 0.354900
246 0.333400
247 0.305500
248 0.254900
249 0.251000
250 0.469400
251 0.364700
252 0.185600
253 0.150500
254 0.354000
255 0.133900
256 0.093200
257 0.297700
258 0.180200
259 0.216000
260 0.113900
261 0.283700
262 0.134100
263 0.033800
264 0.358600
265 0.453800
266 0.326100
267 0.166000
268 0.371600
269 0.129800
270 0.173600
271 0.161700
272 0.052800
273 0.140600
274 0.052200
275 0.392400
276 0.103700
277 0.206600
278 0.077600
279 0.267900
280 0.425900
281 0.033300
282 0.262400
283 0.163300
284 0.317800
285 0.394600
286 0.257400
287 0.207600
288 0.339600
289 0.309500
290 0.195000
291 0.362300
292 0.209900
293 0.278600
294 0.312100
295 0.203300
296 0.159400
297 0.108100
298 0.380800
299 0.200700
300 0.230700
301 0.333100
302 0.231800
303 0.168700
304 0.108700
305 0.093100
306 0.223000
307 0.174300
308 0.301100
309 0.317200
310 0.289300
311 0.033000
312 0.147200
313 0.211600
314 0.150000
315 0.069700
316 0.184500
317 0.041900
318 0.067700
319 0.113800
320 0.231100
321 0.139300
322 0.135500
323 0.190800
324 0.097400
325 0.087900
326 0.032600