Image-Arousal-new

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6535
  • Accuracy: 0.4591

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2322 0.1855 100 1.2411 0.4452
1.1613 0.3711 200 1.2600 0.3987
1.2851 0.5566 300 1.2428 0.4052
1.1931 0.7421 400 1.2041 0.4559
1.1098 0.9276 500 1.1918 0.4586
1.1714 1.1132 600 1.1806 0.4721
1.1216 1.2987 700 1.1692 0.4651
1.2208 1.4842 800 1.1801 0.4614
1.0644 1.6698 900 1.1775 0.4596
1.1638 1.8553 1000 1.2031 0.4721
0.9559 2.0408 1100 1.2392 0.4521
0.8442 2.2263 1200 1.2544 0.4661
0.8713 2.4119 1300 1.2792 0.4744
0.8442 2.5974 1400 1.2618 0.4647
0.831 2.7829 1500 1.3202 0.4554
0.7774 2.9685 1600 1.3087 0.4572
0.5501 3.1540 1700 1.4975 0.4600
0.6069 3.3395 1800 1.5869 0.4512
0.4397 3.5250 1900 1.6458 0.4387
0.4468 3.7106 2000 1.6341 0.4493
0.4198 3.8961 2100 1.6535 0.4591

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
11
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for SeyedAli/Image-Arousal-new

Finetuned
(1818)
this model