|
--- |
|
base_model: HooshvareLab/bert-base-parsbert-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- accuracy |
|
model-index: |
|
- name: Persian-Text-Sentiment-Bert-V1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Persian-Text-Sentiment-Bert-V1 |
|
|
|
This model is a fine-tuned version of [HooshvareLab/bert-base-parsbert-uncased](https://huggingface.co/HooshvareLab/bert-base-parsbert-uncased) on a custom dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3265 |
|
- Precision: 0.8727 |
|
- Recall: 0.8716 |
|
- F1-score: 0.8715 |
|
- Accuracy: 0.8716 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1-score | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:--------:|:--------:| |
|
| 0.3097 | 1.0 | 3491 | 0.3265 | 0.8727 | 0.8716 | 0.8715 | 0.8716 | |
|
| 0.2686 | 2.0 | 6982 | 0.3602 | 0.8785 | 0.8758 | 0.8756 | 0.8758 | |
|
| 0.2137 | 3.0 | 10473 | 0.3828 | 0.8759 | 0.8724 | 0.8721 | 0.8724 | |
|
| 0.1823 | 4.0 | 13964 | 0.5545 | 0.8637 | 0.8636 | 0.8636 | 0.8636 | |
|
| 0.1346 | 5.0 | 17455 | 0.6295 | 0.8572 | 0.8566 | 0.8566 | 0.8566 | |
|
| 0.1001 | 6.0 | 20946 | 0.8501 | 0.8606 | 0.8604 | 0.8604 | 0.8604 | |
|
| 0.071 | 7.0 | 24437 | 1.0192 | 0.8596 | 0.8594 | 0.8594 | 0.8594 | |
|
| 0.0604 | 8.0 | 27928 | 1.0449 | 0.8553 | 0.8553 | 0.8553 | 0.8553 | |
|
| 0.0312 | 9.0 | 31419 | 1.1677 | 0.8598 | 0.8598 | 0.8598 | 0.8598 | |
|
| 0.022 | 10.0 | 34910 | 1.2128 | 0.8593 | 0.8591 | 0.8591 | 0.8591 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.1 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|