|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: cointegrated/rubert-tiny2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: ruBertTiny_attr_name_addv3 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ruBertTiny_attr_name_addv3 |
|
|
|
This model is a fine-tuned version of [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2154 |
|
- Accuracy: 0.9188 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:------:|:------:|:---------------:|:--------:| |
|
| 0.5515 | 0.2739 | 10000 | 0.4502 | 0.7949 | |
|
| 0.49 | 0.5478 | 20000 | 0.3874 | 0.8205 | |
|
| 0.4632 | 0.8217 | 30000 | 0.3556 | 0.8376 | |
|
| 0.4367 | 1.0956 | 40000 | 0.3381 | 0.8419 | |
|
| 0.4122 | 1.3695 | 50000 | 0.3138 | 0.8590 | |
|
| 0.3989 | 1.6434 | 60000 | 0.2787 | 0.8932 | |
|
| 0.389 | 1.9173 | 70000 | 0.2741 | 0.8846 | |
|
| 0.3669 | 2.1912 | 80000 | 0.2523 | 0.9017 | |
|
| 0.3566 | 2.4651 | 90000 | 0.2459 | 0.8932 | |
|
| 0.3502 | 2.7391 | 100000 | 0.2343 | 0.9017 | |
|
| 0.3458 | 3.0130 | 110000 | 0.2248 | 0.9145 | |
|
| 0.3281 | 3.2869 | 120000 | 0.2203 | 0.9145 | |
|
| 0.3255 | 3.5608 | 130000 | 0.2162 | 0.9145 | |
|
| 0.3234 | 3.8347 | 140000 | 0.2176 | 0.9274 | |
|
| 0.3174 | 4.1086 | 150000 | 0.2147 | 0.9188 | |
|
| 0.3126 | 4.3825 | 160000 | 0.2138 | 0.9145 | |
|
| 0.3127 | 4.6564 | 170000 | 0.2155 | 0.9188 | |
|
| 0.3126 | 4.9303 | 180000 | 0.2154 | 0.9188 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.1 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|