|
--- |
|
library_name: setfit |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
base_model: sentence-transformers/paraphrase-mpnet-base-v2 |
|
metrics: |
|
- accuracy |
|
widget: |
|
- text: What is the price of the organic honey? |
|
- text: Variety of cookie boxes |
|
- text: Is the Popcorn Box available in a pack of 50? |
|
- text: What is the price range for the sugarfree chocolate heart sugarfree chocolate |
|
box pack of 5? |
|
- text: Do you have the Off-White x Air Jordan 2 Retro Low SP Black Varsity Royal |
|
in size 10? |
|
pipeline_tag: text-classification |
|
inference: true |
|
model-index: |
|
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.8533333333333334 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 5 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| product faq | <ul><li>'Does the Meenakari jal jangla -Rani saree have meenakari?'</li><li>'Is the Nike Dunk Low Premium Bacon available in size 7?'</li><li>'What is the best way to recycle the packaging boxes for wholesale orders for wholesale orders?'</li></ul> | |
|
| order tracking | <ul><li>'I ordered the Cake Boards 7 days ago with order no 43210 how long will it take to deliver?'</li><li>'I want to deliver bags to Pune, how many days will it take to deliver?'</li><li>'I want to deliver packaging to Surat, how many days will it take to deliver?'</li></ul> | |
|
| product policy | <ul><li>'What is the procedure for returning a product that was part of a special promotion occasion?'</li><li>'Can I return an item if it was damaged during delivery preparation?'</li><li>'What is the procedure for returning a product that was part of a special occasion promotion?'</li></ul> | |
|
| general faq | <ul><li>'What are the key factors to consider when developing a personalized diet plan for weight loss?'</li><li>'What are some tips for maximizing the antioxidant content when brewing green tea?'</li><li>'Can you explain why Mashru silk is considered more comfortable to wear compared to pure silk sarees?'</li></ul> | |
|
| product discoverability | <ul><li>'Can you show me sarees in bright colors suitable for weddings?'</li><li>'Do you have adidas Superstar shoes?'</li><li>'Do you have any bestseller teas available?'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.8533 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("Shankhdhar/classifier_woog_firstbud") |
|
# Run inference |
|
preds = model("Variety of cookie boxes") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 4 | 12.1961 | 28 | |
|
|
|
| Label | Training Sample Count | |
|
|:------------------------|:----------------------| |
|
| general faq | 24 | |
|
| order tracking | 32 | |
|
| product discoverability | 50 | |
|
| product faq | 50 | |
|
| product policy | 48 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (16, 16) |
|
- num_epochs: (2, 2) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: True |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0005 | 1 | 0.2265 | - | |
|
| 0.0244 | 50 | 0.1831 | - | |
|
| 0.0489 | 100 | 0.1876 | - | |
|
| 0.0733 | 150 | 0.1221 | - | |
|
| 0.0978 | 200 | 0.0228 | - | |
|
| 0.1222 | 250 | 0.0072 | - | |
|
| 0.1467 | 300 | 0.0282 | - | |
|
| 0.1711 | 350 | 0.0015 | - | |
|
| 0.1956 | 400 | 0.0005 | - | |
|
| 0.2200 | 450 | 0.0008 | - | |
|
| 0.2445 | 500 | 0.0004 | - | |
|
| 0.2689 | 550 | 0.0003 | - | |
|
| 0.2934 | 600 | 0.0003 | - | |
|
| 0.3178 | 650 | 0.0002 | - | |
|
| 0.3423 | 700 | 0.0002 | - | |
|
| 0.3667 | 750 | 0.0002 | - | |
|
| 0.3912 | 800 | 0.0003 | - | |
|
| 0.4156 | 850 | 0.0002 | - | |
|
| 0.4401 | 900 | 0.0002 | - | |
|
| 0.4645 | 950 | 0.0001 | - | |
|
| 0.4890 | 1000 | 0.0001 | - | |
|
| 0.5134 | 1050 | 0.0001 | - | |
|
| 0.5379 | 1100 | 0.0001 | - | |
|
| 0.5623 | 1150 | 0.0002 | - | |
|
| 0.5868 | 1200 | 0.0002 | - | |
|
| 0.6112 | 1250 | 0.0001 | - | |
|
| 0.6357 | 1300 | 0.0001 | - | |
|
| 0.6601 | 1350 | 0.0001 | - | |
|
| 0.6846 | 1400 | 0.0001 | - | |
|
| 0.7090 | 1450 | 0.0001 | - | |
|
| 0.7335 | 1500 | 0.0001 | - | |
|
| 0.7579 | 1550 | 0.0001 | - | |
|
| 0.7824 | 1600 | 0.0001 | - | |
|
| 0.8068 | 1650 | 0.0001 | - | |
|
| 0.8313 | 1700 | 0.0001 | - | |
|
| 0.8557 | 1750 | 0.0011 | - | |
|
| 0.8802 | 1800 | 0.0002 | - | |
|
| 0.9046 | 1850 | 0.0001 | - | |
|
| 0.9291 | 1900 | 0.0001 | - | |
|
| 0.9535 | 1950 | 0.0002 | - | |
|
| 0.9780 | 2000 | 0.0001 | - | |
|
| 1.0024 | 2050 | 0.0001 | - | |
|
| 1.0269 | 2100 | 0.0002 | - | |
|
| 1.0513 | 2150 | 0.0001 | - | |
|
| 1.0758 | 2200 | 0.0001 | - | |
|
| 1.1002 | 2250 | 0.0001 | - | |
|
| 1.1247 | 2300 | 0.0001 | - | |
|
| 1.1491 | 2350 | 0.0001 | - | |
|
| 1.1736 | 2400 | 0.0001 | - | |
|
| 1.1980 | 2450 | 0.0001 | - | |
|
| 1.2225 | 2500 | 0.0001 | - | |
|
| 1.2469 | 2550 | 0.0001 | - | |
|
| 1.2714 | 2600 | 0.0001 | - | |
|
| 1.2958 | 2650 | 0.0001 | - | |
|
| 1.3203 | 2700 | 0.0001 | - | |
|
| 1.3447 | 2750 | 0.0001 | - | |
|
| 1.3692 | 2800 | 0.0001 | - | |
|
| 1.3936 | 2850 | 0.0001 | - | |
|
| 1.4181 | 2900 | 0.0001 | - | |
|
| 1.4425 | 2950 | 0.0001 | - | |
|
| 1.4670 | 3000 | 0.0001 | - | |
|
| 1.4914 | 3050 | 0.0001 | - | |
|
| 1.5159 | 3100 | 0.0001 | - | |
|
| 1.5403 | 3150 | 0.0001 | - | |
|
| 1.5648 | 3200 | 0.0001 | - | |
|
| 1.5892 | 3250 | 0.0001 | - | |
|
| 1.6137 | 3300 | 0.0001 | - | |
|
| 1.6381 | 3350 | 0.0001 | - | |
|
| 1.6626 | 3400 | 0.0001 | - | |
|
| 1.6870 | 3450 | 0.0001 | - | |
|
| 1.7115 | 3500 | 0.0001 | - | |
|
| 1.7359 | 3550 | 0.0 | - | |
|
| 1.7604 | 3600 | 0.0001 | - | |
|
| 1.7848 | 3650 | 0.0001 | - | |
|
| 1.8093 | 3700 | 0.0001 | - | |
|
| 1.8337 | 3750 | 0.0 | - | |
|
| 1.8582 | 3800 | 0.0001 | - | |
|
| 1.8826 | 3850 | 0.0001 | - | |
|
| 1.9071 | 3900 | 0.0001 | - | |
|
| 1.9315 | 3950 | 0.0 | - | |
|
| 1.9560 | 4000 | 0.0 | - | |
|
| 1.9804 | 4050 | 0.0001 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.13 |
|
- SetFit: 1.0.3 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.39.0 |
|
- PyTorch: 2.2.2+cu121 |
|
- Datasets: 2.19.2 |
|
- Tokenizers: 0.15.2 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |