SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 5 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
order tracking |
|
general faq |
|
product policy |
|
product discoverability |
|
product faq |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.84 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Shankhdhar/classifier_woog_firstbud_updated")
# Run inference
preds = model("cookie boxes with dividers")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 4 | 11.9760 | 28 |
Label | Training Sample Count |
---|---|
general faq | 24 |
order tracking | 34 |
product discoverability | 50 |
product faq | 50 |
product policy | 50 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0005 | 1 | 0.2048 | - |
0.0235 | 50 | 0.2874 | - |
0.0470 | 100 | 0.126 | - |
0.0705 | 150 | 0.0388 | - |
0.0940 | 200 | 0.0786 | - |
0.1175 | 250 | 0.0049 | - |
0.1410 | 300 | 0.0048 | - |
0.1646 | 350 | 0.0018 | - |
0.1881 | 400 | 0.0011 | - |
0.2116 | 450 | 0.0004 | - |
0.2351 | 500 | 0.0006 | - |
0.2586 | 550 | 0.0005 | - |
0.2821 | 600 | 0.0012 | - |
0.3056 | 650 | 0.0004 | - |
0.3291 | 700 | 0.0003 | - |
0.3526 | 750 | 0.0002 | - |
0.3761 | 800 | 0.0002 | - |
0.3996 | 850 | 0.0002 | - |
0.4231 | 900 | 0.0002 | - |
0.4466 | 950 | 0.0008 | - |
0.4701 | 1000 | 0.0002 | - |
0.4937 | 1050 | 0.0003 | - |
0.5172 | 1100 | 0.0001 | - |
0.5407 | 1150 | 0.0002 | - |
0.5642 | 1200 | 0.0001 | - |
0.5877 | 1250 | 0.0001 | - |
0.6112 | 1300 | 0.0001 | - |
0.6347 | 1350 | 0.0004 | - |
0.6582 | 1400 | 0.0002 | - |
0.6817 | 1450 | 0.0001 | - |
0.7052 | 1500 | 0.0002 | - |
0.7287 | 1550 | 0.0001 | - |
0.7522 | 1600 | 0.0001 | - |
0.7757 | 1650 | 0.0001 | - |
0.7992 | 1700 | 0.0001 | - |
0.8228 | 1750 | 0.0001 | - |
0.8463 | 1800 | 0.0001 | - |
0.8698 | 1850 | 0.0001 | - |
0.8933 | 1900 | 0.0001 | - |
0.9168 | 1950 | 0.0001 | - |
0.9403 | 2000 | 0.0001 | - |
0.9638 | 2050 | 0.0001 | - |
0.9873 | 2100 | 0.0002 | - |
1.0108 | 2150 | 0.0001 | - |
1.0343 | 2200 | 0.0001 | - |
1.0578 | 2250 | 0.0001 | - |
1.0813 | 2300 | 0.0001 | - |
1.1048 | 2350 | 0.0001 | - |
1.1283 | 2400 | 0.0 | - |
1.1519 | 2450 | 0.0001 | - |
1.1754 | 2500 | 0.0 | - |
1.1989 | 2550 | 0.0001 | - |
1.2224 | 2600 | 0.0007 | - |
1.2459 | 2650 | 0.0001 | - |
1.2694 | 2700 | 0.0001 | - |
1.2929 | 2750 | 0.0001 | - |
1.3164 | 2800 | 0.0001 | - |
1.3399 | 2850 | 0.0001 | - |
1.3634 | 2900 | 0.0001 | - |
1.3869 | 2950 | 0.0001 | - |
1.4104 | 3000 | 0.0001 | - |
1.4339 | 3050 | 0.0001 | - |
1.4575 | 3100 | 0.0001 | - |
1.4810 | 3150 | 0.0001 | - |
1.5045 | 3200 | 0.0001 | - |
1.5280 | 3250 | 0.0001 | - |
1.5515 | 3300 | 0.0001 | - |
1.5750 | 3350 | 0.0001 | - |
1.5985 | 3400 | 0.0001 | - |
1.6220 | 3450 | 0.0001 | - |
1.6455 | 3500 | 0.0001 | - |
1.6690 | 3550 | 0.0001 | - |
1.6925 | 3600 | 0.0001 | - |
1.7160 | 3650 | 0.0 | - |
1.7395 | 3700 | 0.0001 | - |
1.7630 | 3750 | 0.0001 | - |
1.7866 | 3800 | 0.0 | - |
1.8101 | 3850 | 0.0001 | - |
1.8336 | 3900 | 0.0001 | - |
1.8571 | 3950 | 0.0 | - |
1.8806 | 4000 | 0.0001 | - |
1.9041 | 4050 | 0.0001 | - |
1.9276 | 4100 | 0.0001 | - |
1.9511 | 4150 | 0.0001 | - |
1.9746 | 4200 | 0.0001 | - |
1.9981 | 4250 | 0.0001 | - |
Framework Versions
- Python: 3.10.13
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.39.0
- PyTorch: 2.2.2+cu121
- Datasets: 2.19.2
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 16
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.