metadata
license: apache-2.0
base_model: distilbert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: CONTEXT_one
results: []
CONTEXT_one
This model is a fine-tuned version of distilbert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2483
- Precision: 0.8152
- Recall: 0.8158
- F1: 0.8141
- Accuracy: 0.8158
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
1.3127 | 0.62 | 30 | 1.1497 | 0.6818 | 0.5263 | 0.4785 | 0.5263 |
0.8414 | 1.25 | 60 | 0.8096 | 0.7479 | 0.75 | 0.7472 | 0.75 |
0.597 | 1.88 | 90 | 0.6579 | 0.7904 | 0.7895 | 0.7873 | 0.7895 |
0.4417 | 2.5 | 120 | 0.5761 | 0.8072 | 0.8026 | 0.8026 | 0.8026 |
0.3041 | 3.12 | 150 | 0.6691 | 0.7665 | 0.7632 | 0.7598 | 0.7632 |
0.2384 | 3.75 | 180 | 0.6736 | 0.7717 | 0.7632 | 0.7645 | 0.7632 |
0.28 | 4.38 | 210 | 0.7949 | 0.7602 | 0.7632 | 0.7574 | 0.7632 |
0.22 | 5.0 | 240 | 0.8305 | 0.7917 | 0.7895 | 0.7879 | 0.7895 |
0.1427 | 5.62 | 270 | 0.7339 | 0.8041 | 0.8026 | 0.8025 | 0.8026 |
0.1875 | 6.25 | 300 | 0.7198 | 0.8031 | 0.7895 | 0.7909 | 0.7895 |
0.1216 | 6.88 | 330 | 0.7462 | 0.8315 | 0.8289 | 0.8287 | 0.8289 |
0.0895 | 7.5 | 360 | 0.8646 | 0.8070 | 0.8026 | 0.8006 | 0.8026 |
0.0758 | 8.12 | 390 | 1.0129 | 0.7883 | 0.7632 | 0.7642 | 0.7632 |
0.0636 | 8.75 | 420 | 0.9161 | 0.7893 | 0.7895 | 0.7866 | 0.7895 |
0.0239 | 9.38 | 450 | 0.9354 | 0.7409 | 0.7368 | 0.7367 | 0.7368 |
0.0449 | 10.0 | 480 | 1.0156 | 0.7994 | 0.8026 | 0.7980 | 0.8026 |
0.0089 | 10.62 | 510 | 0.9735 | 0.8125 | 0.8158 | 0.8125 | 0.8158 |
0.0348 | 11.25 | 540 | 1.0077 | 0.7867 | 0.7895 | 0.7848 | 0.7895 |
0.0037 | 11.88 | 570 | 1.1631 | 0.7868 | 0.7895 | 0.7857 | 0.7895 |
0.0022 | 12.5 | 600 | 1.1037 | 0.7998 | 0.8026 | 0.7993 | 0.8026 |
0.026 | 13.12 | 630 | 1.0309 | 0.8152 | 0.8158 | 0.8141 | 0.8158 |
0.0118 | 13.75 | 660 | 1.0360 | 0.8152 | 0.8158 | 0.8141 | 0.8158 |
0.0125 | 14.38 | 690 | 1.2095 | 0.7867 | 0.7895 | 0.7848 | 0.7895 |
0.0158 | 15.0 | 720 | 1.0658 | 0.8152 | 0.8158 | 0.8141 | 0.8158 |
0.0072 | 15.62 | 750 | 1.1267 | 0.7708 | 0.7763 | 0.7688 | 0.7763 |
0.0015 | 16.25 | 780 | 1.1247 | 0.8152 | 0.8158 | 0.8141 | 0.8158 |
0.0018 | 16.88 | 810 | 1.1386 | 0.8152 | 0.8158 | 0.8141 | 0.8158 |
0.0013 | 17.5 | 840 | 1.1468 | 0.8152 | 0.8158 | 0.8141 | 0.8158 |
0.0011 | 18.12 | 870 | 1.1692 | 0.8152 | 0.8158 | 0.8141 | 0.8158 |
0.0013 | 18.75 | 900 | 1.1734 | 0.8152 | 0.8158 | 0.8141 | 0.8158 |
0.0011 | 19.38 | 930 | 1.1857 | 0.8152 | 0.8158 | 0.8141 | 0.8158 |
0.001 | 20.0 | 960 | 1.1890 | 0.8152 | 0.8158 | 0.8141 | 0.8158 |
0.001 | 20.62 | 990 | 1.1924 | 0.8152 | 0.8158 | 0.8141 | 0.8158 |
0.0009 | 21.25 | 1020 | 1.2005 | 0.8152 | 0.8158 | 0.8141 | 0.8158 |
0.0009 | 21.88 | 1050 | 1.2084 | 0.8152 | 0.8158 | 0.8141 | 0.8158 |
0.0009 | 22.5 | 1080 | 1.2216 | 0.8152 | 0.8158 | 0.8141 | 0.8158 |
0.0009 | 23.12 | 1110 | 1.2237 | 0.8152 | 0.8158 | 0.8141 | 0.8158 |
0.0008 | 23.75 | 1140 | 1.2231 | 0.8152 | 0.8158 | 0.8141 | 0.8158 |
0.0008 | 24.38 | 1170 | 1.2286 | 0.8152 | 0.8158 | 0.8141 | 0.8158 |
0.0008 | 25.0 | 1200 | 1.2312 | 0.8152 | 0.8158 | 0.8141 | 0.8158 |
0.0008 | 25.62 | 1230 | 1.2325 | 0.8152 | 0.8158 | 0.8141 | 0.8158 |
0.0008 | 26.25 | 1260 | 1.2362 | 0.8152 | 0.8158 | 0.8141 | 0.8158 |
0.0008 | 26.88 | 1290 | 1.2415 | 0.8152 | 0.8158 | 0.8141 | 0.8158 |
0.0007 | 27.5 | 1320 | 1.2462 | 0.8152 | 0.8158 | 0.8141 | 0.8158 |
0.0008 | 28.12 | 1350 | 1.2471 | 0.8152 | 0.8158 | 0.8141 | 0.8158 |
0.0007 | 28.75 | 1380 | 1.2466 | 0.8152 | 0.8158 | 0.8141 | 0.8158 |
0.0007 | 29.38 | 1410 | 1.2478 | 0.8152 | 0.8158 | 0.8141 | 0.8158 |
0.0007 | 30.0 | 1440 | 1.2483 | 0.8152 | 0.8158 | 0.8141 | 0.8158 |
Framework versions
- Transformers 4.37.1
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1