Edit model card

DIALOGUE_one

This model is a fine-tuned version of distilbert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2052
  • Precision: 0.9762
  • Recall: 0.9737
  • F1: 0.9736
  • Accuracy: 0.9737

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.2045 0.62 30 0.7843 0.9565 0.9474 0.9468 0.9474
0.5845 1.25 60 0.2507 0.9524 0.9474 0.9472 0.9474
0.23 1.88 90 0.1376 0.9762 0.9737 0.9736 0.9737
0.0722 2.5 120 0.0647 0.9762 0.9737 0.9736 0.9737
0.0515 3.12 150 0.1376 0.9762 0.9737 0.9736 0.9737
0.0197 3.75 180 0.1505 0.9637 0.9605 0.9604 0.9605
0.0065 4.38 210 0.1456 0.9762 0.9737 0.9736 0.9737
0.0046 5.0 240 0.1376 0.9762 0.9737 0.9736 0.9737
0.0037 5.62 270 0.1569 0.9762 0.9737 0.9736 0.9737
0.0028 6.25 300 0.1551 0.9762 0.9737 0.9736 0.9737
0.0024 6.88 330 0.1594 0.9762 0.9737 0.9736 0.9737
0.0022 7.5 360 0.1624 0.9762 0.9737 0.9736 0.9737
0.0018 8.12 390 0.1687 0.9762 0.9737 0.9736 0.9737
0.0016 8.75 420 0.1698 0.9762 0.9737 0.9736 0.9737
0.0014 9.38 450 0.1732 0.9762 0.9737 0.9736 0.9737
0.0013 10.0 480 0.1741 0.9762 0.9737 0.9736 0.9737
0.0012 10.62 510 0.1772 0.9762 0.9737 0.9736 0.9737
0.0011 11.25 540 0.1791 0.9762 0.9737 0.9736 0.9737
0.001 11.88 570 0.1814 0.9762 0.9737 0.9736 0.9737
0.001 12.5 600 0.1840 0.9762 0.9737 0.9736 0.9737
0.0008 13.12 630 0.1858 0.9762 0.9737 0.9736 0.9737
0.0009 13.75 660 0.1877 0.9762 0.9737 0.9736 0.9737
0.0008 14.38 690 0.1893 0.9762 0.9737 0.9736 0.9737
0.0007 15.0 720 0.1902 0.9762 0.9737 0.9736 0.9737
0.0007 15.62 750 0.1908 0.9762 0.9737 0.9736 0.9737
0.0007 16.25 780 0.1931 0.9762 0.9737 0.9736 0.9737
0.0006 16.88 810 0.1936 0.9762 0.9737 0.9736 0.9737
0.0006 17.5 840 0.1946 0.9762 0.9737 0.9736 0.9737
0.0006 18.12 870 0.1961 0.9762 0.9737 0.9736 0.9737
0.0006 18.75 900 0.1966 0.9762 0.9737 0.9736 0.9737
0.0005 19.38 930 0.1965 0.9762 0.9737 0.9736 0.9737
0.0005 20.0 960 0.1968 0.9762 0.9737 0.9736 0.9737
0.0005 20.62 990 0.1974 0.9762 0.9737 0.9736 0.9737
0.0005 21.25 1020 0.1987 0.9762 0.9737 0.9736 0.9737
0.0005 21.88 1050 0.1995 0.9762 0.9737 0.9736 0.9737
0.0005 22.5 1080 0.2001 0.9762 0.9737 0.9736 0.9737
0.0005 23.12 1110 0.2010 0.9762 0.9737 0.9736 0.9737
0.0004 23.75 1140 0.2018 0.9762 0.9737 0.9736 0.9737
0.0004 24.38 1170 0.2021 0.9762 0.9737 0.9736 0.9737
0.0004 25.0 1200 0.2025 0.9762 0.9737 0.9736 0.9737
0.0004 25.62 1230 0.2034 0.9762 0.9737 0.9736 0.9737
0.0004 26.25 1260 0.2038 0.9762 0.9737 0.9736 0.9737
0.0004 26.88 1290 0.2042 0.9762 0.9737 0.9736 0.9737
0.0004 27.5 1320 0.2047 0.9762 0.9737 0.9736 0.9737
0.0004 28.12 1350 0.2048 0.9762 0.9737 0.9736 0.9737
0.0004 28.75 1380 0.2050 0.9762 0.9737 0.9736 0.9737
0.0004 29.38 1410 0.2051 0.9762 0.9737 0.9736 0.9737
0.0004 30.0 1440 0.2052 0.9762 0.9737 0.9736 0.9737

Framework versions

  • Transformers 4.37.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
7
Safetensors
Model size
65.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for SharonTudi/DIALOGUE_one

Finetuned
(223)
this model