distilbert-base-uncased-finetuned-squad

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 5.0244

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss
No log 1.0 30 3.5643
No log 2.0 60 2.4546
No log 3.0 90 2.3018
No log 4.0 120 2.4636
No log 5.0 150 2.4736
No log 6.0 180 2.5580
No log 7.0 210 2.6686
No log 8.0 240 2.7249
No log 9.0 270 3.2596
No log 10.0 300 3.5904
No log 11.0 330 3.6709
No log 12.0 360 3.6431
No log 13.0 390 3.6343
No log 14.0 420 3.8316
No log 15.0 450 3.6363
No log 16.0 480 3.8468
0.8931 17.0 510 3.7114
0.8931 18.0 540 3.8719
0.8931 19.0 570 4.0872
0.8931 20.0 600 4.2989
0.8931 21.0 630 4.5494
0.8931 22.0 660 4.2565
0.8931 23.0 690 4.3009
0.8931 24.0 720 4.1816
0.8931 25.0 750 4.2583
0.8931 26.0 780 4.2276
0.8931 27.0 810 4.3481
0.8931 28.0 840 4.4369
0.8931 29.0 870 4.4891
0.8931 30.0 900 4.5521
0.8931 31.0 930 4.5201
0.8931 32.0 960 4.6323
0.8931 33.0 990 4.4766
0.0297 34.0 1020 4.7612
0.0297 35.0 1050 4.9057
0.0297 36.0 1080 4.7580
0.0297 37.0 1110 4.6351
0.0297 38.0 1140 4.6495
0.0297 39.0 1170 4.5980
0.0297 40.0 1200 4.6370
0.0297 41.0 1230 4.6523
0.0297 42.0 1260 4.5802
0.0297 43.0 1290 4.6304
0.0297 44.0 1320 4.7111
0.0297 45.0 1350 4.7219
0.0297 46.0 1380 4.7323
0.0297 47.0 1410 4.9115
0.0297 48.0 1440 4.7873
0.0297 49.0 1470 4.9340
0.0023 50.0 1500 5.0638
0.0023 51.0 1530 5.0750
0.0023 52.0 1560 4.9338
0.0023 53.0 1590 4.9197
0.0023 54.0 1620 4.9282
0.0023 55.0 1650 5.0038
0.0023 56.0 1680 4.9848
0.0023 57.0 1710 4.9932
0.0023 58.0 1740 5.0134
0.0023 59.0 1770 5.0303
0.0023 60.0 1800 5.0244

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0+cu113
  • Tokenizers 0.12.1
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.